Aly Elhefny
Thermochemical modeling and performance evaluation of freeze desalination systems
- Authors Details :
- Aly Elhefny,
- Hamidreza Shabgard,
- Jie Cai,
- Reza Kaviani,
- Ramkumar N. Parthasarathy
Journal title : Desalination
Publisher : Elsevier BV
Print ISSN : 0011-9164
Page Number : 117423
Journal volume : 578
195 Views
Original Article
Freeze desalination (FD) is a method in which saline water is cooled below its freezing point and freshwater is separated from the brine in the form of ice crystals. FD is relatively insensitive to the salinity of the feed solution, making it suitable for desalination of high concentration brines such as the brine rejected from the seawater desalination plants. The design of the FD system and the thermochemical behavior of the brine upon freezing are critical factors in the energy performance of this method. To date, thermochemical properties of the concentrated seawater during cooling, such as the threshold of formation of ice and salt-hydrates and their corresponding cooling load of formation, are not well known. Likewise, the optimal configuration of the FD system to achieve the maximum energy efficiency has not been investigated. This work provides comprehensive data about the cooling load of freezing of concentrated brine rejected from seawater desalination plants along with the threshold of formation of ice and salt-hydrates backed-up by validation. Furthermore, the optimal configuration of the FD system is identified and the effects of the compressor isentropic efficiency and effectiveness of the system’s heat exchangers on the work consumption of the FD system were investigated.
Article DOI & Crossmark Data
DOI : https://doi.org/10.1016/j.desal.2024.117423
Article Subject Details
Article Keywords Details
Article File
Full Text PDF
Article References
- (1). Burek, P., Satoh, Y., Fischer, G., Kahil, M., Scherzer, A., Tramberend, S., Nava, L., Wada, Y., Eisner, S., Fl¨orke, M, Hanasaki, N., Magnuszewski, P., Cosgrove, B., Wiberg, D. Water futures and solution-fast track initiative. 2016.
- (2). 10.1007/s11157-017-9449-7
- (3). 10.1007/s11356-021-13332-8
- (4). 10.1016/j.jclepro.2020.120291
- (5). 10.1016/j.desal.2016.11.018
- (6). 10.1016/j.memsci.2018.03.065
- (7). 10.5004/dwt.2011.1434
- (8). 10.1016/j.scitotenv.2017.03.235
- (9). 10.1016/j.jclepro.2016.10.012
- (10). 10.1016/j.watres.2015.02.032
- (11). 10.1016/j.desal.2020.114659
- (12). 10.1016/j.desal.2017.04.002
- (13). 10.1080/15422110600671734
- (14). 10.1016/j.desal.2020.114378
- (15). 10.3390/e15062046
- (16). Inc. OLI Systems. Add-in, aspen simulation workbook v12.1, 2022 from https://support.olisystems.com.
- (17). Using oli in aspen plus user manual, 2022, from https://wiki.olisystems.com/wiki/using oli in aspen plus user manual.
- (18). Water condition & purification – Magazine, January 2005.
- (19). 10.3390/separations9100272
- (20). 10.1016/j.desal.2021.115484
- (21). 10.1016/j.watres.2016.06.046
- (22). Thijssen, H.A.C. Freeze concentration of food liquids, Proceedings SOS/70, 3rd International Congress of Food Science and Technology, Washington, DC; 491, 1970.
- (23). Thijssen, H.A.C. Apparatus for separation and treatment of solid particles from a liquid suspension. U.S. Patent 3, 872, 009, 1975.
- (24). 10.1016/S0011-9164(00)84032-1
- (25). 10.1016/j.desal.2010.10.053
- (26). Shabgard, H., Parthasarathy, R., Cai, J., Kaviani, R., Elhefny, A.. "Apparatus and method for continuous separation of solid particles from solid-liquid slurries." U.S. Patent Application 17/750, 113, filed November 24, 2022.
- (27). 10.1016/j.desal.2009.11.030
- (28). 10.1021/ie4033999
- (29). 10.1016/S0378-3812(02)00178-4
- (30). J. Gmehling, U. Onken, Vapor–Liquid Equilibrium Data Collection. Dechema Chemistry Data Series, 1977.
- (31). S. Ohe, Vapor–Liquid Equilibrium Data—Salt Effect. Physical Sciences Data Series, No. 43, Elsevier, New York, 1991.
- (32). 10.1016/0378-3812(79)85010-4
- (33). 10.3189/S0022143000013770
- (34). 10.1029/2008JC005211
- (35). 10.3390/e13101829