Profile Pic of Archana Mehrotra Archana Mehrotra

Methods development and validation for the estimation of pioglitazone hcl in bulk and formulations by uv spectroscopy and ftir

  • Authors Details :  
  • Mehrotra Archana,  
  • Singh Karishma,  
  • Singh Sobhna

Journal title : UTTAR PRADESH JOURNAL OF ZOOLOGY

Publisher : IK Press

Print ISSN : 0256-971X

Page Number : 184-192

Journal volume : 44

Journal issue : 22

50 Views Original Article

The use of spectroscopic analysis, particularly UV spectrophotometer, is a simple and essential technique for bulk drug estimation, formulation studies, and compatibility assessments of drugs with various excipients. In the pharmaceutical industry, various analytical instruments, including Fourier transform infrared spectroscopy (FTIR), are employed for investigating drug-excipient interactions that can impact the stability of active pharmaceutical ingredients. This study aimed to develop a UV spectrophotometric method for the analysis of Pioglitazone hydrochloride in phosphate buffer (pH 7.4) and methanolic solution, assessing its linearity and compliance with Beer's Law. Furthermore, we aimed to use FTIR to characterize potential interactions between Pioglitazone and common pharmaceutical excipients, such as Guar Gum, Chitosan, and Sodium Alginate. Standard solutions of Pioglitazone were prepared in phosphate buffer (pH 7.4) and methanol. UV spectrophotometer was conducted to determine the maximum absorption wavelength. Calibration curves were constructed to evaluate linearity and adherence to Beer's Law. FTIR analyses were performed to investigate drug-excipient interactions by examining the functional groups. In phosphate buffer (pH 7.4), the maximum absorption wavelength for Pioglitazone hydrochloride was 268 nm. The calibration curve for Pioglitazone in phosphate buffer (pH 7.4) demonstrated linearity in the concentration range of 1–20 μg/ml, with a correlation coefficient of 0.998. In methanol, the maximum absorption wavelength for Pioglitazone hydrochloride was found to be 272 nm. The calibration curve in methanol exhibited linearity in the range of 1–20 μg/ml, with a correlation coefficient of 0.999. FTIR analysis revealed potential drug-excipient interactions, particularly in the case of Guar Gum, Chitosan, and Sodium Alginate, suggesting the formation of stable hydrogen bonds. The developed UV spectrophotometric method for Pioglitazone analysis is a reliable, cost- effective, and reproducible approach, making it a valuable tool for drug development and quality control. Additionally, the FTIR characterization confirmed interactions between Pioglitazone and common pharmaceutical excipients, enhancing our understanding of formulation compatibility,

Article DOI & Crossmark Data

DOI : https://doi.org/10.56557/UPJOZ/2023/v44i223732

Article Subject Details


Article Keywords Details



Article File

Full Text PDF





More Article by Archana Mehrotra

Lomustine loaded chitosan nanoparticles: characterization and in-vitro cytotoxicity on human lung cancer cell line l132.

The aim of this work was to prepare chitosan nanoparticles loaded with antineoplastic drug lomustine (lcnps), by ionic-gelation method with homogenization. the nanoparticles were c...

Critical process parameters evaluation of modified nanoprecipitation method on lomustine nanoparticles and cytostatic activity study on l132 human cancer cell line.

This work was focused on identification and evaluation of process parameters of modified nanoprecipitation method, for fabrication of lomustine nanoparticles, with the aim of reduc...

Preparation and characterization and biodistribution studies of lomustine loaded plga nanoparticles by interfacial deposition method

The incorporation of lomustine, a hydrophobic anticancer drug into plga nanoparticles by interfacial deposition method was optimized. based on the optimal parameters, it was found ...

Critical process parameters evaluation of modified nanoprecipitation method on lomustine nanoparticles and cytostatic activity study on l132 human cancer cell line

This work was focused on identification and evaluation of process parameters of modified nanoprecipitation method, for fabrication of lomustine nanoparticles, with the aim of reduc...