Natural products the most significant source for pharmaceutical development have been investigated and utilized to alleviate diseases since early human history. Natural compounds from both terrestrial and marine organisms have been extensively used for the treatment of many diseases either in their natural form or as a template for synthetic modification. A variety of new chemical entities from natural resources at present are undergoing clinical trials. The government sector, industries and academic institutions also play an important role in the natural drug development for human health enhancement.
Plants a wealth of secondary metabolites have been used for thousands of years to treat different ailments. A number of these natural products have shown biological and pharmacological activities and serve as the starting point in the development of modern medicines. Screening of crude plant extracts open the door for the way for discovery of novel bioactive compounds and elucidation of their structures leads towards new synthetic preparations, which can be administered in reproducible, accurate doses for particular therapeutic purposes. There is less known information about Samanea saman Merr., and Prosopis cineraria Druce. However, authors in this book present comprehensive information about traditional uses, biological and phytochemical investigation of Samanea saman Merr., and Prosopis cineraria Druce.
Natural products, the most significant source for pharmaceutical development, have been investigated and utilized to alleviate diseases since early human history. The currently accepted modern medicine from different natural products has gradually developed over the years and is God's gift in the sense of traditional knowledge. Trustful humanity believes that drugs can cure every ill of natural origin. Natural medicines, prevalent in holy books, folklores, Materia medica and other historical literature, have become an essential domain of modern pharmaceutical sciences. Natural compounds from terrestrial and marine organisms have been extensively used to treat many diseases in their natural form or as a template for synthetic modification. Several of these natural products have shown biological and pharmacological activities and serve as the starting point in the development of modern medicines. Screening of crude plant extracts opens the door to the discovery of novel bioactive compounds, and elucidation of their structures leads towards new synthetic preparations, which can be administered in reproducible, accurate doses for particular therapeutic purposes. However, what is needed are rapid screening techniques, structure-based design, bioactivity-safety evaluation, extraction and isolation, and clinical trials for drug development under innovations, which will share the profit of products derived from natural origin. The government sector, industries, and academic institutions also play an essential role in developing biological drugs for human health enhancement. This book comprises four chapters. The first chapter is related to urolithiasis. In this chapter, the types of urinary stone formation in humans, their mechanism, current antiurolithiatic strategies and their complications are discussed precisely and comprehensively. Chapter two declares urinary stone treatment in early civilisation. The third chapter is about globally used antiurolithiatic plants. This chapter is a treasure trove of information covering the importance of plants in combating urolithiasis, their diverse pharmacology, and a comprehensive list of 888 antiurolithiatic plants from 144 families used in 55 countries. The tabular format provides a clear understanding of their historical background, mechanism of action, therapeutic spectrum, and formulations with doses. Hopefully, this book will not only be helpful for the general public but also attract the scientific world to antiurolithiatic drug discovery. This valuable ethnopharmacological information will provide opportunities for the future research and development of new natural antiurolithiatic compounds. We extend our heartfelt gratitude to all the teachers, colleagues, and institutions whose unwavering support and encouragement made this book possible. We reserve a special thanks for the acquisition Editor of LAP Lambert Academic Publishing, Germany, whose inspiration and support were invaluable.
Plant secondary metabolites refer to various chemical compounds that plants produce. Still, they are not directly involved in essential growth processes like primary metabolites (such as sugars, amino acids, and lipids). The term "secondary metabolite" has generated controversy, as it implies these compounds are of minor importance to plants. "Special metabolites" may be a more suitable term. These metabolites protect plants from both abiotic and biotic stress. The vast diversity of plant secondary metabolites showcases plants' incredible adaptability and versatility, providing an arsenal of chemical tools to defend against herbivores, protect from pathogens, attract pollinators and seed dispersers, adaptability and thrive in environmental interactions. Plants can, therefore, survive under less-than-ideal conditions. The profound impact of plant secondary metabolites highlights the intricate relationship between plants and humanity, opening doors to innovative applications with far-reaching implications.
"Chemical Pharmacognosy" explores natural drug discovery, traversing from traditional remedies to modern therapeutics. This interdisciplinary approach aids biodiversity exploration, supports conservation, and validates Traditional, Complementary and Alternative Medicine. The significance extends to drug formulation, quality control, and combating drug resistance. Symbolizing a holistic journey, it bridges traditional wisdom with scientific innovation, playing a pivotal role in harnessing nature's chemical diversity for human health and guiding drug development.
Urolithiasis, the process of urinary stone formation, entails the presence of compact masses like whewellite, brushite, and urate within the urinary system. Gout, characterized by inflammatory arthritis, emerges from the accumulation of urate (MSUM) crystals. In vitro, examinations focusing on the growth of whewellite (COM), brushite (CHPD), and urate (MSUM) crystals on glass slides present a cost-effective approach for gaining valuable insights into urolithiasis and gout. These studies not only delve into crystal growth patterns but also investigate the potential inhibition of crystal growth through the application of plant infusions, thereby laying the foundation for further extensive research in these domains.
Rice bean (Vigna Umbellata), a traditional crop cultivated across South, Southeast, and East Asia, is characterized by its wild variety spanning the tropical monsoon forest climatic zone. Despite its vast nutritional and production potential, falling within the leguminous family Fabaceae, the rice bean represents one of many underutilized crops. Indigenous to South and Southeast Asian regions, particularly hilly areas, rice bean is cultivated alongside crops like maize, forming an integral part of impoverished farming communities' livelihoods. Despite its extensive utilization in traditional practices, its commercial significance remains largely unrecognized. However, recent attention has been drawn to the rice bean's nutritional richness, bioactive compounds, and various medicinal properties, including anti-inflammatory, antioxidant, and antidiabetic effects. This significant attention underscores its potential for commercialization and contribution to improving the livelihoods of underprivileged populations. Furthermore, its cultivation and processing give rise to diverse products, reflecting its cultural significance and adaptability across different regions.
The aim of this work was to prepare chitosan nanoparticles loaded with antineoplastic drug Lomustine (LCNPs), by ionic-gelation method with homogenization. The nanoparticles were characterized for particle size, polydispersity index (PDI), surface morphology, encapsulation efficiency, in-vitro drug release and cytotoxicity on human lung cancer cell line L132 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The particle size, zeta potential and encapsulation efficiency of prepared nanoparticles ranged from 75±1.1 to 637±1.6 nm (PDI from 0.05±0.001 to 0.18±0.007), 37.2±0.21 to 53.8±0.18 mV and 66.74±1.4 to 98.0±1.8% re- spectively. The particles were spherical in shape with smooth surface in scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Mechanical shearing by homogenization treatment significantly changed the nanoparticle size. The drug release rate was biphasic and diffusion controlled over the 8 h. LCNPs greatly inhibited the growth of the L132 cancer cell line used in this study in comparison to the native Lomustine (LMT).
This work was focused on identification and evaluation of process parameters of modified nanoprecipitation method, for fabrication of lomustine nanoparticles, with the aim of reducing cancer cell viability at low concentration of lomustine. The parameters controlling particle size, mostly in nanosize, were solvent/nonsolvent composition and emulsification speed of homogenizer along with aqueous phase volume. This controlled particle size is below 250 nm. The stabilizer concentration controlled particle size is within 68 nm ± 0.89 to 137 ± 0.94 nm with PDI 0.06 ± 0.008 to 0.25 ± 0.001. But, the stabilizer addition mode showed more uniform size distribution with PDI 0.085 ± 0.004. Entrapment efficiency was maintained well above 47 ± 0.23%. The drug release pattern was monophasic with controlled release over 24 hrs. In the method used, drug content was affected by ratio of polymer to drug to organic solvent, as well as homogenization speed and time. Percentage viable cells of L132 human lung cancer cell line remained, were only 5% at 100 μg/ml lomustine equivalent PLA nanoparticles.
The incorporation of lomustine, a hydrophobic anticancer drug into PLGA nanoparticles by interfacial deposition method was optimized. Based on the optimal parameters, it was found that lomustine-PLGA nanoparticles with acceptable properties could be obtained. Optimization of formulation variables to control the size and drug entrapment efficiency of the prepared nanoparticles seems to be based on the same scientific principles as drug-loaded nanoparticles prepared by nanoprecipitation, solvent evaporation method. The process was the most important factor to control the particle size, while both the drug-polymer interaction and the partition of drug in organic and aqueous phases were the crucial factors to govern the drug entrapment efficiency. PLGA concentration at lower level (100 mg), 1:5 organic phase: aqueous ratio, 1%w/v PVA concentration, 3%w/v pluronic F68 achieved smaller particle size. Additionally, L:G ratio of PLGA 75:25, lower volume of organic solvent (1:10 organic phase: aqueous phase), higher initial drug content (10mg) enhanced the drug entrapment efficiency and maintained lomustine concentration in blood for an extended time period, elevated lomustine concentration in lungs and slowed the elimination of lomustine. The biodistribution profiles of prepared nanoparticles in albino mice showed higher plasma drug concentration for longer period of time, elevated drug concentration in lungs and slow elimination from kidney. No toxic effects of prepared nanoparticles were observed in histopathological examination of lungs and kidney. The systematic investigation reported here promises the development of PLGA nanoparticles loaded with lomustine when tested in Lung Cancer cell line L132 and toxicological/ histopathological studies in albino mice.
This work was focused on identification and evaluation of process parameters of modified nanoprecipitation method, for fabrication of lomustine nanoparticles, with the aim of reducing cancer cell viability at low concentration of lomustine. The parameters controlling particle size, mostly in nanosize, were solvent/nonsolvent composition and emulsification speed of homogenizer along with aqueous phase volume. This controlled particle size is below 250 nm. The stabilizer concentration controlled particle size is within 68 nm ± 0.89 to 137 ± 0.94 nm with PDI 0.06 ± 0.008 to 0.25 ± 0.001. But, the stabilizer addition mode showed more uniform size distribution with PDI 0.085 ± 0.004. Entrapment efficiency was maintained well above 47 ± 0.23%. The drug release pattern was monophasic with controlled release over 24 hrs. In the method used, drug content was affected by ratio of polymer to drug to organic solvent, as well as homogenization speed and time. Percentage viable cells of L132 human lung cancer cell line remained, were only 5% at 100 μg/ml lomustine equivalent PLA nanoparticles.
The incorporation of lomustine, a hydrophobic anticancer drug into PLGA nanoparticles by interfacial deposition method was optimized. Based on the optimal parameters, it was found that lomustine-PLGA nanoparticles with acceptable properties could be obtained. Optimization of formulation variables to control the size and drug entrapment efficiency of the prepared nanoparticles seems to be based on the same scientific principles as drug-loaded nanoparticles prepared by nanoprecipitation, solvent evaporation method. The process was the most important factor to control the particle size, while both the drug-polymer interaction and the partition of drug in organic and aqueous phases were the crucial factors to govern the drug entrapment efficiency. PLGA concentration at lower level (100 mg), 1:5 organic phase: aqueous ratio, 1%w/v PVA concentration, 3%w/v pluronic F68 achieved smaller particle size. Additionally, L:G ratio of PLGA 75:25, lower volume of organic solvent (1:10 organic phase: aqueous phase), higher initial drug content (10mg) enhanced the drug entrapment efficiency and maintained lomustine concentration in blood for an extended time period, elevated lomustine concentration in lungs and slowed the elimination of lomustine. The biodistribution profiles of prepared nanoparticles in albino mice showed higher plasma drug concentration for longer period of time, elevated drug concentration in lungs and slow elimination from kidney. No toxic effects of prepared nanoparticles were observed in histopathological examination of lungs and kidney. The systematic investigation reported here promises the development of PLGA nanoparticles loaded with lomustine when tested in Lung Cancer cell line L132 and toxicological/ histopathological studies in albino mice.
The incorporation of lomustine, a hydrophobic anticancer drug into PLGA nanoparticles by interfacial deposition method was optimized. Based on the optimal parameters, it was found that lomustine-PLGA nanoparticles with acceptable properties could be obtained. Optimization of formulation variables to control the size and drug entrapment efficiency of the prepared nanoparticles seems to be based on the same scientific principles as drug-loaded nanoparticles prepared by nanoprecipitation, solvent evaporation method. The process was the most important factor to control the particle size, while both the drug-polymer interaction and the partition of drug in organic and aqueous phases were the crucial factors to govern the drug entrapment efficiency. PLGA concentration at lower level (100 mg), 1:5 organic phase: aqueous ratio, 1%w/v PVA concentration, 3%w/v pluronic F68 achieved smaller particle size. Additionally, L:G ratio of PLGA 75:25, lower volume of organic solvent (1:10 organic phase: aqueous phase), higher initial drug content (10 mg) enhanced the drug entrapment efficiency and maintained lomustine concentration in blood for an extended time period, elevated lomustine concentration in lungs and slowed the elimination of lomustine. The biodistribution profiles of prepared nanoparticles in albino mice showed higher plasma drug concentration for longer period of time, elevated drug concentration in lungs and slow elimination from kidney. No toxic effects of prepared nanoparticles were observed in histopathological examination of lungs and kidney. The systematic investigation reported here promises the development of PLGA nanoparticles loaded with lomustine when tested in Lung Cancer cell line L132 and toxicological/ histopathological studies in albino mice.
This study was aimed to develop lomustine loaded chitosan nanoparticles using a homogenization and spray drying technique. Effect of crosslinking agents (sodium tripolyphosphate (TPP), and sodium hexametaphosphate (HMP)) were studied on the leaching of drug, water uptake of hydrogels, drug release from matrix and its mechanism. Nanoparticles were obtained in the average size range of 111±16.2 to 942±11.7 nm with polydispersity index (PDI) from 0.116±0.039 to 0.517±0.037. Zeta potential of nanoparticles was ranged from 29.0±1.1 to 56.0±1.1 mV. The % encapsulation effi ciency of nanoparticles ranged between 58±0.88% and 96±0.51%.nanoparticles were coated with PEG 6000 to modulate drug release. Swelling index of chitosan-TPP and chitosan-TPP-PEG nanoparticles was about 428% and 350% over the 4 h and it was more (about 465% and 395%) for chitosan-HMP and chitosan-HMP-PEG nanoparticles. Drug release was sustained and diffusion controlled. Optimized formulation was tested for anticancer activity and drug retention study. Cytotoxicity on human lung cancer cell line L132 was studied by trypan blue dye exclusion test. Drug loaded nanoparticles killed L132 cells more effi ciently than the corresponding drug alone (p< 0.05). Due to the increased surface area lomustine loaded TPP and HMP crosslinked chitosan nanoparticles showed better anticancer activity.
The present study describes the use of an aqueous solution containing a blend of hydrotropic solubilizing agents (mixed hydrotropic substance’s solution) as a successful solvent system utilizing the concept of mixed hydrotropy for spectrophotometric analytical estimation of various conventional formulations as well as novel drug delivery systems. Frusemide, a poorly water-soluble drug, was estimated by application of mixed hydrotropic solubilization method. There was more than 15-fold enhancement in aqueous solubility of frusemide in a solution of blend of hydrotropic agents which consisted of 30% urea, 13.6% sodium acetate and 11.8% sodium citrate. This solvent mixture was employed to solubilize the drug from the fine powder of tablet formulations as well as the niosomes of frusemide. The selected λmax for spectrophotometric estimation was 333 nm. The hydrotropic agents used in the analysis and additives used in the manufacture of tablets and preparation of niosomes did not interfere in the analysis. Statistical data proved the accuracy, reproducibility and precision of the proposed method. The results suggested that proposed method is new, rapid, simple, accurate, and reproducible as well as employed aqueous solvent instead of organic solvents in estimation of drug from the dosage forms.
The use of spectroscopic analysis, particularly UV spectrophotometer, is a simple and essential technique for bulk drug estimation, formulation studies, and compatibility assessments of drugs with various excipients. In the pharmaceutical industry, various analytical instruments, including Fourier transform infrared spectroscopy (FTIR), are employed for investigating drug-excipient interactions that can impact the stability of active pharmaceutical ingredients. This study aimed to develop a UV spectrophotometric method for the analysis of Pioglitazone hydrochloride in phosphate buffer (pH 7.4) and methanolic solution, assessing its linearity and compliance with Beer's Law. Furthermore, we aimed to use FTIR to characterize potential interactions between Pioglitazone and common pharmaceutical excipients, such as Guar Gum, Chitosan, and Sodium Alginate. Standard solutions of Pioglitazone were prepared in phosphate buffer (pH 7.4) and methanol. UV spectrophotometer was conducted to determine the maximum absorption wavelength. Calibration curves were constructed to evaluate linearity and adherence to Beer's Law. FTIR analyses were performed to investigate drug-excipient interactions by examining the functional groups. In phosphate buffer (pH 7.4), the maximum absorption wavelength for Pioglitazone hydrochloride was 268 nm. The calibration curve for Pioglitazone in phosphate buffer (pH 7.4) demonstrated linearity in the concentration range of 1–20 μg/ml, with a correlation coefficient of 0.998. In methanol, the maximum absorption wavelength for Pioglitazone hydrochloride was found to be 272 nm. The calibration curve in methanol exhibited linearity in the range of 1–20 μg/ml, with a correlation coefficient of 0.999. FTIR analysis revealed potential drug-excipient interactions, particularly in the case of Guar Gum, Chitosan, and Sodium Alginate, suggesting the formation of stable hydrogen bonds. The developed UV spectrophotometric method for Pioglitazone analysis is a reliable, cost- effective, and reproducible approach, making it a valuable tool for drug development and quality control. Additionally, the FTIR characterization confirmed interactions between Pioglitazone and common pharmaceutical excipients, enhancing our understanding of formulation compatibility,
Most of mosquito-repellent products and devices are made up of synthetic materials presenting market which causes various harmful effects on human beings. The resistance can be developed by the mosquito due to continuous exposure at high doses. Hence, the present research work represents the development and evaluation of mosquito repellent sticks with the help of various herbal products such as starch powder, wood powder, charcoal powder, eucalyptus oil, coconut oil, lavender oil, lemongrass and cinnamon oil, peppermint and citronella, neem oil making them ozone-friendly, financial effective, non-harmful.
Dry powder injection of spironolactone was developed using lyophilization and hydrotropic solubilization method. It is fast acting medication in emergencies like refractory edema associated with heart failure and hepatic cirrhosis. The ultimate aqueous based powder prepared showed 892.85 and 378.57 times increased solubility of spironolactone with sodium salicylate and sodium benzoate as compared to its water solubility. Amongst six hydrotropic agents, the solubility was increased in the order sodium salicylate > sodium benzoate > nicotinamide > sodium ascorbate > urea > sodium acetate. IR graph showed shift of wavenumber of characteristic peaks. Lyophilization technique produced more stable product against different temperature cycles and stability parameters. Degradation was only about 0.45% at room temperature and it was more about 1.3% at higher temperatures. Haemolytic activities of lyophilized formulations observed were 8.54% to 96.85% for sodium salicylate based hydrotropic lyophilized system and 3.50 to 88.17% for sodium salicylate based hydrotropic lyophilized system.
In the present study nanoparticles of lomustine were fabricated using chitosan polymer crosslinked with different crosslinking agents like sodium tripolyphosphate and sodium hexametaphosphate. Different formulations of nanoparticles were prepared using different concentrations of crosslinking agents and polyethylene glycol 6000. The average particle size ranged between 112 nm to 942 nm. Zeta potential of nanoparticles ranged between 29.0 mV up to 56.0 mV. Encapsulation efficiency was variable from 58%-96%. The nanoparticles were solid spherical. In vitro drug release study was carried out in phosphate buffered saline solution pH 7.4 for 10 h. The analysis of regression values of Higuchi plot suggested diffusional mechanism and follows Fick's law of diffusion. Drug polymer interaction was absent as evidenced by FT-IR spectra and DSC thermograms. With polyethylene glycol inclusion shows interaction between lomustine and PEG. Cell viability assay (MTT Assay) showed that the lomustine nanoparticles were able to reduce the tumour cell proliferation and increased cell viability significantly (p< 0.05) as compared to pure drug in L 132 human lung cancer cell line
Potato starch extraction is a critical process with implications across various industries, including food, pharmaceuticals, and bioplastics. This review explores current techniques, challenges, and future opportunities in potato starch extraction. Traditional methods such as compression or wet grinding, enzymatic processes, and microwave-assisted extraction are examined for their efficiency, advantages, and limitations. The paper emphasizes the importance of quality control measures to ensure the purity and safety of the extracted starch. Critical quality control aspects include raw material inspection, monitoring during processing, purity and composition analysis, and adherence to national and international standards. Innovations in extraction methods, including enzymatic and green solvent extraction, ultrasonic and microwave-assisted techniques, and advancements in nanotechnology and biotechnological approaches, are highlighted as trends driving the industry towards greater sustainability and efficiency. The clean label movement also reflects a consumer-driven shift towards natural, minimally processed ingredients, influencing industry practices and regulatory compliance. The future of potato starch extraction holds significant promise, with the integration of sustainable practices and technological innovations to meet evolving market demands and regulatory standards, underscoring the need for continuous research and development in the field.