Decision Sciences articles list

A novel heuristic for the transportation problem: dhouib-matrix-tp1

The transportation problem is widely applied in the real world. This problem aims to minimize the total shipment cost from a number of sources to a number of destinations. This paper presents a new method named Dhouib-Matrix-TP1, which generates an initial basic feasible solution based on the standard deviation metric with a very reduced number of simple iterations. A comparative study is carried out in order to verify the performance of the proposed Dhouib-Matrix-TP1 heuristic.

Souhail Dhouib

Design and development of framework for big data based smart farming system

Improving the agricultural productivity is an imminent need to meet the food requirement of constantly growing population rate. It can be gracefully satisfied if the farming process is integrated through technologies such as big data and IoT. The integration of agricultural processes with modern technologies has emerged as the smart agriculture technology. This research work is focused on proving the suitability of the big data analytics for smart agricultural processes in terms of increasing production and quality of yields with less resources and overhead. This research paper expounds the extensive review carried out on the related works in smart agricultural farming, challenges in implementing the smart farming technologies at large scale, followed by the conceptual framework model for the effective implementation of big data together with IoT devices in smart farming.

Dr H Shaheen

Early diagnosis of tuberculosis using deep learning approach for iot based healthcare applications

In the modern world, Tuberculosis (TB) is regarded as a serious health issue with a high rate of mortality. TB can be cured completely by early diagnosis. For achieving this, one tool utilized is CXR (Chest X-rays) which is used to screen active TB. An enhanced deep learning (DL) model is implemented for automatic Tuberculosis detection. This work undergoes the phases like preprocessing, segmentation, feature extraction, and optimized classification. Initially, the CXR image is preprocessed and segmented using AFCM (Adaptive Fuzzy C means) clustering. Then, feature extraction and several features are extracted. Finally, these features are given to the DL classifier Deep Belief Network (DBN). To improve the classification accuracy and to optimize the DBN, a metaheuristic optimization Adaptive Monarch butterfly optimization (AMBO) algorithm is used. Here, the Deep Belief Network with Adaptive Monarch butterfly optimization (DBN-AMBO) is used for enhancing the accuracy, reducing the error function, and optimizing weighting parameters. The overall implementation is carried out on the Python platform. The overall performance evaluations of the DBN-AMBO were carried out on MC and SC datasets and compared over the other approaches on the basis of certain metrics.

Dr H Shaheen