
Uluslararası İleri Doğa

Bilimleri ve Mühendislik

Araştırmaları Dergisi

Sayı 7, S. 147-154, 5, 2023

© Telif hakkı IJANSER’e aittir

Araştırma Makalesi

https://as-proceeding.com/index.php/ijanser

 ISSN: 2980-0811

 International Journal of Advanced

Natural Sciences and Engineering

Researches

Volume 7, pp. 147-154, 5, 2023

Copyright © 2023 IJANSER

Research Article

147

Models of Data Structures in Educational Visualizations for Supporting

Teaching and Learning Algorithms and Computer Programming

Ladislav Végh

Department of Informatics, J. Selye University, Slovakia

veghl@ujs.sk Email of the corresponding author

(Received: 06 June 2023, Accepted: 21 June 2023)

(1st International Conference on Pioneer and Innovative Studies ICPIS 2023, June 5-7, 2023)

ATIF/REFERENCE: Végh, L. (2023). Models of Data Structures in Educational Visualizations for Supporting Teaching and

Learning Algorithms and Computer Programming. International Journal of Advanced Natural Sciences and Engineering

Researches, 7(5), 147-154.

Abstract – Teaching and learning computer programming is challenging for many undergraduate first-year

computer science students. During introductory programming courses, novice programmers need to learn

some basic algorithms, gain algorithmic thinking, improve their logical and problem-solving thinking skills,

and learn data types, data structures, and the syntax of the chosen programming language. In literature, we

can find various methods of teaching programming that can motivate students and reduce students’

cognitive load during the learning process of computer programming, e.g., using robotic kits,

microcontrollers, microworld environments, virtual worlds, serious games, interactive animations, and

visualizations. In this paper, we focus mainly on algorithm visualizations, especially on the different models

of data structures that can be effectively used in educational visualizations. First, we show how a vector

(one-dimensional array), a matrix (two-dimensional array), a singly linked list, and a graph can be

represented by various models. Next, we also demonstrate some examples of interactive educational

algorithm animations for teaching and learning elementary algorithms and some sorting algorithms, e.g.,

swapping two variables, summing elements of the array, mirroring the array, searching the minimum or

maximum of the array, searching the index of minimum or maximum of the array, sorting elements of the

array using simple exchange sort, bubblesort, insertion sort, minsort, maxsort, quicksort, or mergesort.

Finally, in the last part of the paper, we summarize our experiences in teaching algorithmization and

computer programming using algorithm animations and visualizations and draw some conclusions.

Keywords – Algorithms, Visualizations, Animations, Data Structures, Teaching And Learning, Computer Programming.

I. INTRODUCTION

Learning algorithms and programming are

challenging for many computer science students.

According to our research [1], 39% of

undergraduate first-year computer science students

at our university do not have any prior experience in

computer programming. Novice programmers need

to gain appropriate algorithmization skills, improve

their logical thinking and problem-solving skills,

learn the basic data types and data structures, and

learn the syntax of a programming language.

Because of the complexity and abstract nature of

computer programming, it might be overwhelming

for novice programmers; therefore, they might lose

motivation after a few weeks of the introductory

computer programming course. However, many

https://as-proceeding.com/index.php/ijanser
mailto:veghl@ujs.sk

International Journal of Advanced Natural Sciences and Engineering Researches

148

methods and tools might support teaching and

learning computer programming and increase

students’ motivation [2]–[5].

II. VARIOUS METHODS AND TOOLS TO SUPPORT

TEACHING AND LEARNING COMPUTER

PROGRAMMING

Using educational robotic kits and robots in

informatics education [6]–[10] shows an actual

application of computer programming to novice

programmers. Instead of seeing the output only on

the monitor’s screen, students can watch how a

robot executes the instruction of the written program

code, which has considerable motivation power.

Another possibility to motivate novice

programmers is using games in computer

programming education. Usually, every child likes

playing games; even high school or university

students like playing computer games sometimes.

Therefore, students might learn basic computer

programming concepts using serious games in

teaching and learning computer programming [11]–

[15]. After gaining some experience in

programming, students might even develop their

simple computer games [16]–[20].

By using microcontrollers in computer science

education [21]–[26], students can see another

practical application of programming in real life,

which might increase novice programmers’

motivation. Furthermore, students can use various

sensors and switches as inputs and LEDs, LED

panels, motors, and speakers as outputs, which

could be exciting and motivating.

Using microworlds and microworld environments

[27]–[30] in programming education might also be

helpful for novice programmers to gain appropriate

algorithmic thinking and basic programming skills

playfully.

Another way to increase students’ motivation in

computer science education might be using virtual

worlds [31]–[32] or simulations [33].

Finally, we would like to mention using

visualizations of data structures and using

interactive algorithm animations in programming

education [34]–[39] that can help students

understand some basic concepts of computer

programming and algorithms. Moreover, after

gaining programming experience, students can

quickly develop visualizations and interactive

animations, e.g., using JavaScript libraries [40].

III. EDUCATIONAL MODELS OF DATA STRUCTURES IN

ALGORITHM VISUALIZATIONS

As we mentioned, using visualization and

interactive animations in teaching and learning

computer programming is one of the ways to

motivate students and help them to understand data

structures and algorithms effectively and efficiently.

However, the education model representing the

standard data structure is crucial to visualization or

interactive animation. Using appropriate models,

novice programmers can quickly process

information and learn illustrated concepts or

algorithms [35], [36]. In the following part of this

section, we show how various educational models

could represent a vector (one-dimensional array), a

matrix (two-dimensional array), a linked, and a

graph.

A. Vector (one-dimensional array)

Vector is usually one of the first standard data

structures that novice programmers learn to use

during introductory programming courses. For

example, one of the most common ways to visualize

a one-dimensional array is using a row of squares

with numbers (Fig. 1). The indexes of the elements

are shown above every square. Even though this

way of visualization might be enough in many

cases, for some students, it could be overwhelming

because they need to process the information (the

values of elements representing the numbers), and

at the same time, they need to focus on the steps of

the algorithm. To process the information more

manageable, especially for young students, it might

be better to use some graphical representation

instead of a textual (numeric) representation [41].

Fig. 1 Visualization of a vector with numbers

One of the ways to illustrate a vector graphically

is to use columns, where the values of the elements

are represented by the heights of the columns (Fig.

2). This way of representing a one-dimensional

array is advantageous when the algorithm compares

the values of the elements, e.g., when sorting

algorithms are demonstrated [37], [42], [43].

Furthermore, except for the heights of the columns

(values of elements), the color of the columns could

also be used to show some information, e.g., the

International Journal of Advanced Natural Sciences and Engineering Researches

149

green color can illustrate the sorted part of the array,

the red color can represent the unsorted part of the

array, and the yellow color can show which two

elements are compared or swapped (Fig. 2) [36].

Fig. 2 Visualization of a vector with columns [44]

Another way to visualize a one-dimensional array

is to use colorful balls, where the brightness of the

color represents the value of the elements (Fig 3)

[45]. This type of visualization helps demonstrate

sorting algorithms, as well as the representation of

the vector with columns.

Fig. 3 Visualization of a vector with colorful balls [45]

Using playing cards as a visualization of a one-

dimensional array in the interactive demonstration

of a sorting algorithm can also be motivating and

engaging for novice programmers (Fig. 4) [43],

[46].

Fig. 4 Visualization of a vector with playing cards [46]

B. Matrix (two-dimensional array)

After gaining experience with one-dimensional

arrays, students learn to use matrices (two-

dimensional arrays). The most common way of

visualizing a matrix is using squares with numbers

in several rows and columns (Fig. 5). Before the first

column are shown the indexes of the rows, and

above the first row are shown the indexes of the

columns (Fig. 5).

Fig. 5 Visualization of a matrix with numbers

This way of representing a matrix is usually

appropriate in most cases. However, suppose we

want to emphasize the values of the elements,

compare the values of some elements in the matrix,

or show the location of the low or high values in the

matrix. In that case, we can use colors to represent

the values of elements in the matrix (Fig. 6). The

bright colors can represent the high values of the

elements, and the dark colors can represent the low

values of the elements in the matrix.

Fig. 6 Visualization of a matrix with colors (heatmap)

C. Linked list

Using dynamically created linked lists is usually

one of the most challenging tasks in introductory

programming courses. However, in our opinion and

experiences, appropriate visualizations of

dynamically created linked lists might help students

to understand this topic easily and quickly [47],

[48].

The visualization of a dynamically created linked

list contains the representation of the pointers and

the connected nodes in a similar way as they are

stored in the memory of the computer (Fig. 7). In the

image below, we can see two pointers (first, p2),

which are pointing to the first and the last node of a

singly linked list. In addition, the nodes contain a

numeric value and a pointer to the next node (Fig.

7).

International Journal of Advanced Natural Sciences and Engineering Researches

150

Fig. 7 Visualization of a singly linked list [49]

D. Graph

Automation of the visualization of graphs is

usually a challenging task [34], mainly because a

graph consists of several vertices (nodes) which

could be connected with directed or not directed

edges. To properly illustrate a graph, it is necessary

to place the nodes in such locations in the

visualization that the connection between the nodes

can be clearly viewed. For example, in Fig. 8, we

can see a visualization of an undirected graph

consisting of five nodes and seven edges.

Fig. 8 Visualization of an undirected graph [50]

Furthermore, to use a graph in computer

programs, novice programmers must understand

that the programming language has no standard

“graph” data structure. Instead, to represent a graph

in a computer program, they must use a matrix (Fig.

9) or a list (Fig. 10).

Fig. 9 Representing the graph with adjacency matrix [50]

The adjacency matrix (Fig. 9) consists of the same

number of rows and columns. The number of nodes

in the graph gives the number of rows and columns.

When two nodes are connected in the graph, the

intersection of the given row and column is number

1 in the adjacency matrix (otherwise, there is 0). For

an undirected graph, every edge is represented twice

in the adjacency matrix, e.g., the edge between

nodes 2 and 3 is represented by value 1 in the 3rd

column of the 2nd row and the 2nd column of the 3rd

row [50].

Fig. 10 Representing the graph with adjacency list [50]

The adjacency list contains a vector of pointers

representing the nodes of the graph (vertical column

in Fig. 10). Every element of the vector points to a

dynamically created singly linked list, which

contains the number of nodes that the given node is

connected with [50].

IV. EXAMPLES OF ALGORITHM VISUALIZATIONS

Visualizations of data structures could be used in

printed books, electronic studying materials,

interactive animations, etc. [51]. However, students

probably benefit the most from using interactive

animations, where the visualizations show the

changes dynamically according to the steps of the

demonstrated computer science algorithms.

The first basic algorithms that students meet

during the introductory programming courses are

swapping two variables, summing elements of the

array, mirroring the array, searching the minimum

or maximum of the array, searching the index of the

minimum or maximum of the array, etc. Examples

of interactive animations demonstrating these

elementary algorithms can be found on the webpage

[52]. Fig. 11 shows a screenshot of an interactive

animation illustrating the summing of elements of a

one-dimensional array. Except for the visual

representation of the one-dimensional array, the

interactive animation contains the visual

representation of a variable (“sum”), an index

variable (“i”) used in the for loop of the algorithm,

and the pseudocode of the algorithm with the

highlighted line of code that is just executed.

International Journal of Advanced Natural Sciences and Engineering Researches

151

Fig. 11 Interactive animation demonstrating the summing of

elements of a one-dimensional array [52]

Next, computer science students can learn sorting

algorithms with time complexity O(n2), e.g., simple

exchange sort, bubblesort, insertion sort, minsort,

and maxsort. To introduce these sorting algorithms

and learn the main steps, similarities, and

differences of these sorting algorithms, students can

use interactive animations of playing cards (Fig. 12)

which can be found on the webpage [46]. The main

benefit of using these animations with a conceptual

view for introducing sorting algorithms is that

students can see how the various sorting algorithms

work without going into the details. Thus, there is a

less cognitive load for students [43].

Fig. 12 Interactive animation of the bubblesort algorithm [46]

Similar demonstrations of sorting algorithms with

a conceptual view can be found on the webpage

[53], where robots sort colorful balls in ascending

order from the darkest to the brightest using various

sorting algorithms (Fig. 13).

Fig. 13 Video demonstrating the insertion sort algorithm [45]

After understanding the main steps, similarities,

and differences of these sorting algorithms using

animations with a conceptual view, it is advised for

students to use micro-level animations of the same

sorting algorithms. The micro-level animations

show the algorithms in more detail; the animations

usually contain indexes of the elements,

representations of loop variables, pseudocode, or

program code with the highlighted lines of currently

executed instructions (Fig. 14). Examples of these

interactive animations of sorting algorithms can be

found on the webpage [44].

Fig. 14 Interactive animation of the bubblesort algorithm [44]

Students can step these interactive animations of

algorithms forward or backward; they can change

the input data, play the animation continuously, or

change the speed of the animation. Using these

animations, students understand the illustrated

sorting algorithms in more detail. They see in the

program code that these algorithms usually contain

two nested loops and a conditional statement, and

they fully comprehend how these algorithms work

[43]. After understanding these simple sorting

algorithms, later they can more easily understand

recursive sorting algorithms with time complexity

O(n.log2n), e.g., algorithms of quicksort or

mergesort. Examples of interactive animations of

such recursive sorting algorithms are available on

the webpage [54].

Demonstrating the sorting algorithms with folk

dances (Fig. 15) is another exciting and entertaining

way of understanding these computer science

algorithms [55], [56]. Fig. 15 shows a screenshot of

a video illustrating the bubblesort algorithm with

Hungarian ("Csángó") folk dance.

International Journal of Advanced Natural Sciences and Engineering Researches

152

Fig. 15 Bubblesort algorithm illustrated with a folk dance

[56]

V. SUMMARY AND CONCLUSION

In this paper, first, we described the possibilities

of making algorithmization and computer

programming more engaging, motivating, and

playful for students using various methods and

tools. Next, in the article’s main part, we dealt with

the educational models of data structures that can be

used in visualizations. Finally, we showed some

examples of interactive animations that can be used

for teaching and learning programming.

According to our experiences and prior research

[42], [43], [57], using appropriate interactive

animations and visualizations can help students

understand computer science algorithms easier and

quicker, keep novice programmers motivated

during the whole programming course, and make

the learning algorithms more enjoyable.

ACKNOWLEDGMENT

The paper was supported by project KEGA

013TTU-4/2021 “Interactive animation and

simulation models for deep learning”.

REFERENCES

[1] L. Végh and Š. Gubo, “Assessment of Algorithmic and

Logical Thinking of First- and Second-Year Computer

Science Students at J. Selye University in Academic

Years 2019/20 and 2021/22,” in ICERI2022

Proceedings, 2022, pp. 1888–1895.

https://doi.org/10.21125/iceri.2022.0480

[2] T. Y. Gainutdinova, M. Y. Denisova, and O. A.

Shirokova, “Current Trends in the Study of Object-

Oriented Programming in Higher Education,” in

Proceedings IFTE-2019, 2019, pp. 163–169.

https://doi.org/10.3897/ap.1.e0152

[3] J. Udvaros, N. Forman, and D. É. Dobák, “Application

and impact of electronic solutions in teaching

programming,” Annales Mathematicae et Informaticae,

Special issue on Formal Methods in Informatics, 2023.

https://doi.org/10.33039/ami.2023.04.001

[4] K. Czakóová and V. Stoffová, “Training teachers of

computer science for teaching algorithmization and

programming,” in IMSCI´20 proceedings, The 14th

International Multi-conference on Society, Cybernetics

and Informatics, 2020, pp. 231–235.

[5] J. Udvaros and O. Takáč, “Technical IT solutions in

teaching,” in INTED 2022 Proceedings, 2022, pp. 4047–

4052. https://doi.org/10.21125/inted.2022.1107

[6] V. Stoffová and M. Zboran, “Educational Robotics in

Teaching Programming in Primary School,” in

Proceedings of International Conference on Recent

Innovations in Computing (ICRIC 2022), Lecture Notes

in Electrical Engineering (LNEE, volume 1001), 2023,

pp. 669–682. https://doi.org/10.1007/978-981-19-9876-

8_51

[7] V. Chaudhary, V. Agrawal, P. Sureka, and A. Sureka,

“An Experience Report on Teaching Programming and

Computational Thinking to Elementary Level Children

Using Lego Robotics Education Kit,” in 2016 IEEE

Eighth International Conference on Technology for

Education (T4E), 2016, pp. 38–41.

https://doi.org/10.1109/T4E.2016.016

[8] K. Mohamed, Y. Dorgham, and N. Sharaf, “Kodockly:

Using a Tangible Robotic Kit for Teaching

Programming,” in Proceedings of the 13th International

Conference on Computer Supported Education, 2021,

vol. 1, pp 137–147.

https://doi.org/10.5220/0010446401370147

[9] A. Fegely and H. Tang, “Learning programming through

robots: the effects of educational robotics on pre-service

teachers’ programming comprehension and motivation,”

Educational technology research and development, vol.

70, pp. 2211–2234, 2022.

https://doi.org/10.1007/s11423-022-10174-0

[10] O. Takáč and J. Udvaros, “Implementation of the

Principles of Obstacle Detection with the Help of Irobot

Roomba in the Teaching of Computer Science,” in ICERI

2021 Proceedings, 2021, pp. 6682–6687.

https://doi.org/10.21125/iceri.2021.1509

[11] A. Akkaya and Y. Akpinar, “Experiential serious-game

design for development of knowledge of object-oriented

programming and computational thinking skills,”

Computer Science Education, vol. 32, issue 4, pp. 476–

501, 2022.

https://doi.org/10.1080/08993408.2022.2044673

[12] N. Bouali, E. Nygren, S. S. Oyelere, J. Suhonen, and V.

Cavalli-Sforza, “Imikode: A VR Game to Introduce OOP

Concepts,” in Koli Calling '19: Proceedings of the 19th

Koli Calling International Conference on Computing

Education Research, 2019, pp. 1–2.

https://doi.org/10.1145/3364510.3366149

[13] E. Lotfi and M. Bouhorma, “Teaching Object Oriented

Programming Concepts Through a Mobile Serious

Game,” in SCA '18: Proceedings of the 3rd International

Conference on Smart City Applications, 2018, pp. 1–6.

https://doi.org/10.1145/3286606.3286851

[14] D. Bundhoo and L. Nagowah, “Gaming with OOP Learn:

A Mobile Serious Game to Learn Object-Oriented

Programming,” in 3rd International Conference on Next

Generation Computing Applications (NextComp), 2022,

pp. 1–6,

https://doi.org/10.1109/NextComp55567.2022.9932243

[15] N. Singh and L. Nagowah, “OOP Codes: Teaching

Object-Oriented Programming Concepts Through

https://doi.org/10.21125/iceri.2022.0480
https://doi.org/10.3897/ap.1.e0152
https://doi.org/10.33039/ami.2023.04.001
https://doi.org/10.21125/inted.2022.1107
https://doi.org/10.1007/978-981-19-9876-8_51
https://doi.org/10.1007/978-981-19-9876-8_51
https://doi.org/10.1109/T4E.2016.016
https://doi.org/10.5220/0010446401370147
https://doi.org/10.1007/s11423-022-10174-0
https://doi.org/10.21125/iceri.2021.1509
https://doi.org/10.1080/08993408.2022.2044673
https://doi.org/10.1145/3364510.3366149
https://doi.org/10.1145/3286606.3286851
https://doi.org/10.1109/NextComp55567.2022.9932243

International Journal of Advanced Natural Sciences and Engineering Researches

153

Mobile Serious Game,” in 25th International Computer

Science and Engineering Conference (ICSEC), 2021, pp.

377–382

https://doi.org/10.1109/ICSEC53205.2021.9684593

[16] L. Végh and O. Takáč, “Teaching and Learning

Computer Programming by Creating 2D Games in

Unity,” in ICERI 2021 Proceedings, 14th International

Conference of Education, Research and Innovation,

2021. pp. 5696–5700.

https://doi.org/10.21125/iceri.2021.1285

[17] V. Gabaľová, M. Karpielová, and V. Stoffová,

“Beginners Online Programming Course for Making

Games in Construct 2,” in Proceedings of International

Conference on Recent Innovations in Computing (ICRIC

2022), Lecture Notes in Electrical Engineering (LNEE,

volume 1001), 2023. pp. 547–558.

https://doi.org/10.1007/978-981-19-9876-8_41

[18] K. Czakóová, “Game-based programming in primary

school informatics,” in INTED 2021, Proceedings of the

15th International Technology, Education and

Development Conference, 2021, pp. 5627–5632.

https://doi.org/10.21125/inted.2021.1134

[19] K. Czakóová and J. Udvaros, “Applications and games

for the development of algorithmic thinking in favor of

experiential learning,” in EDULEARN21 : Proceedings

of the 13th International Conference on Education and

New Learning Technologies, 2021, pp. 6873–6879.

https://doi.org/10.21125/edulearn.2021.1389

[20] K. Czakóová, “Developing algorithmic thinking by

educational computer games,” in Proceedings of the 16th

International Scientific Conference “eLearning and

Software for Education”: eLearning sustainment for

never-ending learning, 2020, vol. 1, pp. 26–33.

https://doi.org/10.12753/2066-026X-20-003

[21] J. Udvaros and O. Takáč, “Developing Computational

Thinking by Microcontrollers,” in ICERI 2020

Proceedings, 13th annual International Conference of

Education, Research and Innovation, 2020, pp. 6877–

6882. https://doi.org/10.21125/iceri.2020.1474

[22] M. Csóka and K. Czakóová, “Innovations in education

through the application of raspberry pi devices and

modern teaching strategies,” in INTED 2021,

Proceedings of the 15th International Technology,

Education and Development Conference, 2021, pp.

6653–6658. https://doi.org/10.21125/inted.2021.1327

[23] J. Udvaros and K. Czakóová, “Developing of

computational thinking using microcontrollers and

simulations,” in EDULEARN21, Proceedings of the 13th

International Conference on Education and New

Learning Technologies, 2021, pp. 7945–7951.

https://doi.org/10.21125/edulearn.2021.1619

[24] J. Udvaros and K. Czakóová, “Using teaching methods

based on visualizing by TinkerCad in teaching

programming,” in ICERI 2021 Proceedings, 2021, pp.

5913–5917. https://doi.org/10.21125/iceri.2021.1333

[25] M. T. Fülöp, J. Udvaros, Á. Gubán, and Á. Sándor,

“Development of Computational Thinking Using

Microcontrollers Integrated into OOP (Object-Oriented

Programming),” Sustainability, vol. 14, no. 12: 7218,

2022. https://doi.org/10.3390/su14127218

[26] J. Udvaros and L. Végh, “New teaching methods by

using microcontrollers in teaching programming,” in

Proceedings of the 16th International Scientific

Conference "eLearning and Software for Education",

2020, pp. 630–637. http://doi.org/10.12753/2066-026X-

20-119

[27] K. Czakóová, “Microworld environment of small

language as „living laboratory” for developing

educational games and applications,” in Proceedings of

the 13th International Scientific Conference „eLearning

and Software for Education“, Could technology support

learning efficiency?, 2017, vol. 1, pp. 286–291.

https://doi.org/10.12753/2066-026X-17-042

[28] V. Stoffová and K. Czakóová, Úvod do programovania

v prostredí mikrosvetov, Komárno, Slovakia: J. Selye

University, 2016.

[29] M. Kölling, “The Greenfoot programming

environment,” ACM Transactions on Computing

Education, vol. 10, no. 4, pp. 1–21, 2010.

https://doi.org/10.1145/1868358.1868361

[30] S. Cooper, W. Dann, and R. Pausch, “Alice: A 3-D tool

for introductory programming concepts,” Journal of

Computing Science in Colleges, vol. 15, no. 5, pp. 107–

116, 2000.

[31] M. Turcsányi-Szabó, L. Csízi, and L. Végh, “Virtual

Worlds in Education – best practice, design and research

consideration,” Teaching Mathematics and Computer

Science, vol. 10, issue 2, pp. 309–323, 2012.

https://doi.org/10.5485/TMCS.2012.0308

[32] L. Végh and M. Turcsányi-Szabó, “Using a Virtual

School for Teaching and Learning the Basics of 3D

Modeling and LSL Scripting in Second Life,” in

eLearning and Software for Education: Could

technology support learning efficiency?, 2017, vol 1, pp.

572–579. https://doi.org/10.12753/2066-026X-17-084

[33] N. Annuš and O. Takáč, “Algorithmic and Simulation-

Based Teaching of Computer Science and Mathematics

in Higher Education,” in ICERI2022 Proceedings, 15th

annual International Conference of Education, Research

and Innovation, 2022, pp. 4904-4911.

https://doi.org/10.21125/iceri.2022.1184

[34] I. Bende, “Data Visualization in Programming

Education,” Acta Didactica Napocensia, vol. 15, no. 1,

pp. 52–60, 2022. https://doi.org/10.24193/adn.15.1.5

[35] M. Esponda-Arguero, “Techniques for visualizing data

structures in algorithmic animations,” Information

Visualization, vol. 9, issue 1, pp. 31–46, 2010.

https://doi.org/10.1057/ivs.2008.26

[36] R. Fleischer and L. Kucera, “Algorithm animation for

teaching,” Software Visualization, Lecture Notes in

Computer Science, vol. 2269, pp. 113–128, 2002.

[37] L. Végh, “Animations in Teaching Algorithms and

Programming,” in Nové technologie ve vzdělávání,

Olomouc, Czech Republic, 2011.

[38] J. Udvaros and M. Gubán, “Demonstration the class,

objects and inheritance concepts by software,” Acta

Didactica Napocensia, vol. 9, no. 1, pp. 23–34, 2016.

[39] J. Udvaros, “Teaching Object Oriented Programming by

Visual Devices,” in Proceedings of the 15th

International Scientific Conference “eLearning and

https://doi.org/10.1109/ICSEC53205.2021.9684593
https://doi.org/10.21125/iceri.2021.1285
https://doi.org/10.1007/978-981-19-9876-8_41
https://doi.org/10.21125/inted.2021.1134
https://doi.org/10.21125/edulearn.2021.1389
https://doi.org/10.12753/2066-026X-20-003
https://doi.org/10.21125/iceri.2020.1474
https://doi.org/10.21125/inted.2021.1327
https://doi.org/10.21125/edulearn.2021.1619
https://doi.org/10.21125/iceri.2021.1333
https://doi.org/10.3390/su14127218
http://doi.org/10.12753/2066-026X-20-119
http://doi.org/10.12753/2066-026X-20-119
https://doi.org/10.12753/2066-026X-17-042
https://doi.org/10.1145/1868358.1868361
https://doi.org/10.5485/TMCS.2012.0308
https://doi.org/10.12753/2066-026X-17-084
https://doi.org/10.21125/iceri.2022.1184
https://doi.org/10.24193/adn.15.1.5
https://doi.org/10.1057/ivs.2008.26

International Journal of Advanced Natural Sciences and Engineering Researches

154

Software for Education”, 2019, vol. 1, pp. 407–413.

https://doi.org/10.12753/2066-026X-19-054

[40] J. Udvaros and L. Végh, “Possibilities of Creating

Interactive 2D Animations for Education Using HTML5

Canvas JavaScript Libraries,” in Proceedings of the 16th

International Scientific Conference "eLearning and

Software for Education", 2020, pp. 269–274.

https://doi.org/10.12753/2066-026X-20-119

[41] R. E. Mayer, Multimedia Learning, 2nd ed., New York,

USA: Cambridge University Press, 2009.

[42] L. Végh and V. Stoffová, “An interactive animation for

learning sorting algorithms: How students reduced the

number of comparisons in a sorting algorithm by playing

a didactic game,” Teaching Mathematics and Computer

Science, vol. 14, no. 1, pp. 45–62, 2016.

https://doi.org/10.5485/TMCS.2016.0415

[43] L. Végh and V. Stoffová, “Algorithm Animations for

Teaching and Learning the Main Ideas of Basic

Sortings,” Informatics in Education, vol. 16, issue 1, pp.

121–140, 2017. https://doi.org/10.15388/infedu.2017.07

[44] L. Végh. (2020) Interactive animations for teaching

algorithms and programming. Sorting algorithms 1.

[Online]. Available:

https://anim.ide.sk/sorting_algorithms_1.php

[45] udiprod. (2017) Insertion Sort vs Bubble Sort + Some

analysis. [Online]. Available:

https://youtu.be/TZRWRjq2CAg

[46] L. Végh. (2020) Interactive animations for teaching

algorithms and programming. Sorting cards. [Online].

Available: https://anim.ide.sk/sortingcards.php

[47] L. Végh, “Elektronická podpora vyučovania

dynamických údajových štruktúr,” in XIX.

DIDMATTECH 2006, Komárno, Slovakia, 2006.

[48] V. Stoffová and L. Végh, “Grafické modely

dynamických údajových štruktúr a ich význam vo

vyučovaní programovania,” in Trendy ve vzdělávání

2013, Olomouc, Czech Republic, 2013.

[49] L. Végh. (2020) Interactive animations for teaching

algorithms and programming. Singly linked list.

[Online]. Available: https://anim.ide.sk/list.php

[50] T. Nagy and R. Giachetta. (2011) Gráfok ábrázolása.

[Online], in I. Fekete and L. Hunyadvári (eds.)

Algoritmusok és adatszerkezetek. Available:

http://tamop412.elte.hu/tananyagok/algoritmusok/lecke

23_lap1.html

[51] I. Bende, “Az algoritmus vizualizáció felhasználási

lehetőségeinek vizsgálata az algoritmusoktatásban,” PhD

dissertation, Eötvös Loránd University, Budapest,

Hungary, 2023.

[52] L. Végh. (2020) Interactive animations for teaching

algorithms and programming. Basic algorithms.

[Online]. Available:

https://anim.ide.sk/basic_algorithms.php

[53] udiprod. Category: Computer Science. [Online]

Available:

https://www.udiprod.com/category/videos/computerscie

nce/

[54] L. Végh. (2020) Interactive animations for teaching

algorithms and programming. Sorting algorithms 2.

[Online]. Available:

https://anim.ide.sk/sorting_algorithms_2.php

[55] Z. Katai and L. Tóth, “Technologically and artistically

enhanced multi-sensory computer-programming

education,” Teaching and Teacher Education, vol. 26,

issue 2, pp. 244–251, 2010.

https://doi.org/10.1016/j.tate.2009.04.012

[56] AlgoRythmics. (2011) Bubble-sort with Hungarian

("Csángó") folk dance. [Online]. Available:

https://youtu.be/lyZQPjUT5B4

[57] L. Végh and O. Takáč, “Using Interactive Card

Animations for Understanding of the Essential Aspects

of Non-recursive Sorting Algorithms,” in Advances in

Intelligent Systems and Computing: Proceedings of the

2015 Federated Conference on Software Development

and Object Technologies, 2017, pp. 336–347.

https://doi.org/10.1007/978-3-319-46535-7_25

https://doi.org/10.12753/2066-026X-19-054
https://doi.org/10.12753/2066-026X-20-119
https://doi.org/10.5485/TMCS.2016.0415
https://doi.org/10.15388/infedu.2017.07
https://anim.ide.sk/sorting_algorithms_1.php
https://youtu.be/TZRWRjq2CAg
https://anim.ide.sk/sortingcards.php
https://anim.ide.sk/list.php
http://tamop412.elte.hu/tananyagok/algoritmusok/lecke23_lap1.html
http://tamop412.elte.hu/tananyagok/algoritmusok/lecke23_lap1.html
https://anim.ide.sk/basic_algorithms.php
https://www.udiprod.com/category/videos/computerscience/
https://www.udiprod.com/category/videos/computerscience/
https://anim.ide.sk/sorting_algorithms_2.php
https://doi.org/10.1016/j.tate.2009.04.012
https://youtu.be/lyZQPjUT5B4
https://doi.org/10.1007/978-3-319-46535-7_25

