
Uluslararası İleri Doğa 

Bilimleri ve Mühendislik 

Araştırmaları Dergisi 

Sayı 7, S. 147-154, 5, 2023 

© Telif hakkı IJANSER’e aittir  

Araştırma Makalesi 
   

 
https://as-proceeding.com/index.php/ijanser 

 ISSN: 2980-0811 

 International Journal of Advanced 

Natural Sciences and Engineering 

Researches 

Volume 7, pp. 147-154, 5, 2023 

Copyright © 2023 IJANSER 

Research Article 

 

 

147 

 

 

Models of Data Structures in Educational Visualizations for Supporting 

Teaching and Learning Algorithms and Computer Programming 

Ladislav Végh 

Department of Informatics, J. Selye University, Slovakia  
 

veghl@ujs.sk Email of the corresponding author 

 

(Received: 06 June 2023, Accepted: 21 June 2023) 

(1st International Conference on Pioneer and Innovative Studies ICPIS 2023, June 5-7, 2023) 

ATIF/REFERENCE: Végh, L. (2023). Models of Data Structures in Educational Visualizations for Supporting Teaching and 

Learning Algorithms and Computer Programming. International Journal of Advanced Natural Sciences and Engineering 

Researches, 7(5), 147-154. 

Abstract – Teaching and learning computer programming is challenging for many undergraduate first-year 

computer science students. During introductory programming courses, novice programmers need to learn 

some basic algorithms, gain algorithmic thinking, improve their logical and problem-solving thinking skills, 

and learn data types, data structures, and the syntax of the chosen programming language. In literature, we 

can find various methods of teaching programming that can motivate students and reduce students’ 

cognitive load during the learning process of computer programming, e.g., using robotic kits, 

microcontrollers, microworld environments, virtual worlds, serious games, interactive animations, and 

visualizations. In this paper, we focus mainly on algorithm visualizations, especially on the different models 

of data structures that can be effectively used in educational visualizations. First, we show how a vector 

(one-dimensional array), a matrix (two-dimensional array), a singly linked list, and a graph can be 

represented by various models. Next, we also demonstrate some examples of interactive educational 

algorithm animations for teaching and learning elementary algorithms and some sorting algorithms, e.g., 

swapping two variables, summing elements of the array, mirroring the array, searching the minimum or 

maximum of the array, searching the index of minimum or maximum of the array, sorting elements of the 

array using simple exchange sort, bubblesort, insertion sort, minsort, maxsort, quicksort, or mergesort.  

Finally, in the last part of the paper, we summarize our experiences in teaching algorithmization and 

computer programming using algorithm animations and visualizations and draw some conclusions. 
 

Keywords – Algorithms, Visualizations, Animations, Data Structures, Teaching And Learning, Computer Programming. 

 

I. INTRODUCTION 

Learning algorithms and programming are 

challenging for many computer science students. 

According to our research [1], 39% of 

undergraduate first-year computer science students 

at our university do not have any prior experience in 

computer programming. Novice programmers need 

to gain appropriate algorithmization skills, improve 

their logical thinking and problem-solving skills, 

learn the basic data types and data structures, and 

learn the syntax of a programming language. 

Because of the complexity and abstract nature of 

computer programming, it might be overwhelming 

for novice programmers; therefore, they might lose 

motivation after a few weeks of the introductory 

computer programming course. However, many 
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methods and tools might support teaching and 

learning computer programming and increase 

students’ motivation [2]–[5]. 

II. VARIOUS METHODS AND TOOLS TO SUPPORT 

TEACHING AND LEARNING COMPUTER 

PROGRAMMING 

Using educational robotic kits and robots in 

informatics education [6]–[10] shows an actual 

application of computer programming to novice 

programmers. Instead of seeing the output only on 

the monitor’s screen, students can watch how a 

robot executes the instruction of the written program 

code, which has considerable motivation power. 

Another possibility to motivate novice 

programmers is using games in computer 

programming education. Usually, every child likes 

playing games; even high school or university 

students like playing computer games sometimes. 

Therefore, students might learn basic computer 

programming concepts using serious games in 

teaching and learning computer programming [11]–

[15]. After gaining some experience in 

programming, students might even develop their 

simple computer games [16]–[20]. 

By using microcontrollers in computer science 

education [21]–[26], students can see another 

practical application of programming in real life, 

which might increase novice programmers’ 

motivation. Furthermore, students can use various 

sensors and switches as inputs and LEDs, LED 

panels, motors, and speakers as outputs, which 

could be exciting and motivating. 

Using microworlds and microworld environments 

[27]–[30] in programming education might also be 

helpful for novice programmers to gain appropriate 

algorithmic thinking and basic programming skills 

playfully. 

Another way to increase students’ motivation in 

computer science education might be using virtual 

worlds [31]–[32] or simulations [33]. 

Finally, we would like to mention using 

visualizations of data structures and using 

interactive algorithm animations in programming 

education [34]–[39] that can help students 

understand some basic concepts of computer 

programming and algorithms. Moreover, after 

gaining programming experience, students can 

quickly develop visualizations and interactive 

animations, e.g., using JavaScript libraries [40]. 

III. EDUCATIONAL MODELS OF DATA STRUCTURES IN 

ALGORITHM VISUALIZATIONS 

As we mentioned, using visualization and 

interactive animations in teaching and learning 

computer programming is one of the ways to 

motivate students and help them to understand data 

structures and algorithms effectively and efficiently. 

However, the education model representing the 

standard data structure is crucial to visualization or 

interactive animation. Using appropriate models, 

novice programmers can quickly process 

information and learn illustrated concepts or 

algorithms [35], [36]. In the following part of this 

section, we show how various educational models 

could represent a vector (one-dimensional array), a 

matrix (two-dimensional array), a linked, and a 

graph. 

A. Vector (one-dimensional array) 

Vector is usually one of the first standard data 

structures that novice programmers learn to use 

during introductory programming courses. For 

example, one of the most common ways to visualize 

a one-dimensional array is using a row of squares 

with numbers (Fig. 1). The indexes of the elements 

are shown above every square. Even though this 

way of visualization might be enough in many 

cases, for some students, it could be overwhelming 

because they need to process the information (the 

values of elements representing the numbers), and 

at the same time, they need to focus on the steps of 

the algorithm. To process the information more 

manageable, especially for young students, it might 

be better to use some graphical representation 

instead of a textual (numeric) representation [41].   

 

Fig. 1 Visualization of a vector with numbers  

One of the ways to illustrate a vector graphically 

is to use columns, where the values of the elements 

are represented by the heights of the columns (Fig. 

2). This way of representing a one-dimensional 

array is advantageous when the algorithm compares 

the values of the elements, e.g., when sorting 

algorithms are demonstrated [37], [42], [43]. 

Furthermore, except for the heights of the columns 

(values of elements), the color of the columns could 

also be used to show some information, e.g., the 
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green color can illustrate the sorted part of the array, 

the red color can represent the unsorted part of the 

array, and the yellow color can show which two 

elements are compared or swapped (Fig. 2) [36].  

 

Fig. 2 Visualization of a vector with columns [44] 

Another way to visualize a one-dimensional array 

is to use colorful balls, where the brightness of the 

color represents the value of the elements (Fig 3) 

[45]. This type of visualization helps demonstrate 

sorting algorithms, as well as the representation of 

the vector with columns. 

 

Fig. 3 Visualization of a vector with colorful balls [45] 

Using playing cards as a visualization of a one-

dimensional array in the interactive demonstration 

of a sorting algorithm can also be motivating and 

engaging for novice programmers (Fig. 4) [43], 

[46].  

 

Fig. 4 Visualization of a vector with playing cards [46] 

B. Matrix (two-dimensional array) 

After gaining experience with one-dimensional 

arrays, students learn to use matrices (two-

dimensional arrays). The most common way of 

visualizing a matrix is using squares with numbers 

in several rows and columns (Fig. 5). Before the first 

column are shown the indexes of the rows, and 

above the first row are shown the indexes of the 

columns (Fig. 5). 

 

Fig. 5 Visualization of a matrix with numbers  

This way of representing a matrix is usually 

appropriate in most cases. However, suppose we 

want to emphasize the values of the elements, 

compare the values of some elements in the matrix, 

or show the location of the low or high values in the 

matrix. In that case, we can use colors to represent 

the values of elements in the matrix (Fig. 6). The 

bright colors can represent the high values of the 

elements, and the dark colors can represent the low 

values of the elements in the matrix. 

  

Fig. 6 Visualization of a matrix with colors (heatmap) 

C. Linked list 

Using dynamically created linked lists is usually 

one of the most challenging tasks in introductory 

programming courses. However, in our opinion and 

experiences, appropriate visualizations of 

dynamically created linked lists might help students 

to understand this topic easily and quickly [47], 

[48]. 

The visualization of a dynamically created linked 

list contains the representation of the pointers and 

the connected nodes in a similar way as they are 

stored in the memory of the computer (Fig. 7). In the 

image below, we can see two pointers (first, p2), 

which are pointing to the first and the last node of a 

singly linked list. In addition, the nodes contain a 

numeric value and a pointer to the next node (Fig. 

7). 
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Fig. 7 Visualization of a singly linked list [49] 

D. Graph 

Automation of the visualization of graphs is 

usually a challenging task [34], mainly because a 

graph consists of several vertices (nodes) which 

could be connected with directed or not directed 

edges. To properly illustrate a graph, it is necessary 

to place the nodes in such locations in the 

visualization that the connection between the nodes 

can be clearly viewed. For example, in Fig. 8, we 

can see a visualization of an undirected graph 

consisting of five nodes and seven edges. 

   

Fig. 8 Visualization of an undirected graph [50] 

Furthermore, to use a graph in computer 

programs, novice programmers must understand 

that the programming language has no standard 

“graph” data structure. Instead, to represent a graph 

in a computer program, they must use a matrix (Fig. 

9) or a list (Fig. 10).   

  

Fig. 9 Representing the graph with adjacency matrix [50] 

The adjacency matrix (Fig. 9) consists of the same 

number of rows and columns. The number of nodes 

in the graph gives the number of rows and columns. 

When two nodes are connected in the graph, the 

intersection of the given row and column is number 

1 in the adjacency matrix (otherwise, there is 0). For 

an undirected graph, every edge is represented twice 

in the adjacency matrix, e.g., the edge between 

nodes 2 and 3 is represented by value 1 in the 3rd 

column of the 2nd row and the 2nd column of the 3rd 

row [50]. 

Fig. 10 Representing the graph with adjacency list [50] 

The adjacency list contains a vector of pointers 

representing the nodes of the graph (vertical column 

in Fig. 10). Every element of the vector points to a 

dynamically created singly linked list, which 

contains the number of nodes that the given node is 

connected with [50]. 

IV. EXAMPLES OF ALGORITHM VISUALIZATIONS 

Visualizations of data structures could be used in 

printed books, electronic studying materials, 

interactive animations, etc. [51]. However, students 

probably benefit the most from using interactive 

animations, where the visualizations show the 

changes dynamically according to the steps of the 

demonstrated computer science algorithms. 

The first basic algorithms that students meet 

during the introductory programming courses are 

swapping two variables, summing elements of the 

array, mirroring the array, searching the minimum 

or maximum of the array, searching the index of the 

minimum or maximum of the array, etc. Examples 

of interactive animations demonstrating these 

elementary algorithms can be found on the webpage 

[52]. Fig. 11 shows a screenshot of an interactive 

animation illustrating the summing of elements of a 

one-dimensional array. Except for the visual 

representation of the one-dimensional array, the 

interactive animation contains the visual 

representation of a variable (“sum”), an index 

variable (“i”) used in the for loop of the algorithm, 

and the pseudocode of the algorithm with the 

highlighted line of code that is just executed. 
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Fig. 11 Interactive animation demonstrating the summing of 

elements of a one-dimensional array [52] 

Next, computer science students can learn sorting 

algorithms with time complexity O(n2), e.g., simple 

exchange sort, bubblesort, insertion sort, minsort, 

and maxsort. To introduce these sorting algorithms 

and learn the main steps, similarities, and 

differences of these sorting algorithms, students can 

use interactive animations of playing cards (Fig. 12) 

which can be found on the webpage [46]. The main 

benefit of using these animations with a conceptual 

view for introducing sorting algorithms is that 

students can see how the various sorting algorithms 

work without going into the details. Thus, there is a 

less cognitive load for students [43].     

 

Fig. 12 Interactive animation of the bubblesort algorithm [46] 

Similar demonstrations of sorting algorithms with 

a conceptual view can be found on the webpage 

[53], where robots sort colorful balls in ascending 

order from the darkest to the brightest using various 

sorting algorithms (Fig. 13). 

 

Fig. 13 Video demonstrating the insertion sort algorithm [45] 

After understanding the main steps, similarities, 

and differences of these sorting algorithms using 

animations with a conceptual view, it is advised for 

students to use micro-level animations of the same 

sorting algorithms. The micro-level animations 

show the algorithms in more detail; the animations 

usually contain indexes of the elements, 

representations of loop variables, pseudocode, or 

program code with the highlighted lines of currently 

executed instructions (Fig. 14). Examples of these 

interactive animations of sorting algorithms can be 

found on the webpage [44]. 

 

Fig. 14 Interactive animation of the bubblesort algorithm [44] 

Students can step these interactive animations of 

algorithms forward or backward; they can change 

the input data, play the animation continuously, or 

change the speed of the animation. Using these 

animations, students understand the illustrated 

sorting algorithms in more detail. They see in the 

program code that these algorithms usually contain 

two nested loops and a conditional statement, and 

they fully comprehend how these algorithms work 

[43]. After understanding these simple sorting 

algorithms, later they can more easily understand 

recursive sorting algorithms with time complexity 

O(n.log2n), e.g., algorithms of quicksort or 

mergesort. Examples of interactive animations of 

such recursive sorting algorithms are available on 

the webpage [54]. 

Demonstrating the sorting algorithms with folk 

dances (Fig. 15) is another exciting and entertaining 

way of understanding these computer science 

algorithms [55], [56]. Fig. 15 shows a screenshot of 

a video illustrating the bubblesort algorithm with 

Hungarian ("Csángó") folk dance. 
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Fig. 15 Bubblesort algorithm illustrated with a folk dance 

[56] 

V. SUMMARY AND CONCLUSION 

In this paper, first, we described the possibilities 

of making algorithmization and computer 

programming more engaging, motivating, and 

playful for students using various methods and 

tools. Next, in the article’s main part, we dealt with 

the educational models of data structures that can be 

used in visualizations. Finally, we showed some 

examples of interactive animations that can be used 

for teaching and learning programming. 

According to our experiences and prior research 

[42], [43], [57], using appropriate interactive 

animations and visualizations can help students 

understand computer science algorithms easier and 

quicker, keep novice programmers motivated 

during the whole programming course, and make 

the learning algorithms more enjoyable. 
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