Research Article

EUROPEAN JOURNAL OF BIOMEDICAL AND PHARMACEUTICAL SCIENCES

http://www.ejbps.com

ISSN 2349-8870 Volume: 4 Issue: 05 421-430 Year: 2017

DEVELOPMENT AND VALIDATION OF STABILITY INDICATING ANALYTICAL METHOD FOR SIMULTANEOUS ESTIMATION OF MICONAZOLE AND ORNIDAZOLE IN THEIR COMBINED MARKETED DOSAGE FORM

Prachi Maheshbhai Barbhaiya*

Department of Quality Assurance, A-One Pharmacy College, Ahmedabad, Gujarat, India.

*Corresponding Author: Prachi Maheshbhai Barbhaiya

Department of Quality Assurance, A-One Pharmacy College, Ahmedabad, Gujarat, India.

Article Received on 13/03/2017

Article Revised on 03/04/2017

Article Accepted on 24/04/2017

ABSTRACT

A simple, precise, accurate, sensitive, specific and reliable stability indicating RP-HPLC method was developed for the simultaneous estimation of Miconazole (MIC) and Ornidazole (ORN) in pharmaceutical dosage form. The method was developed with mobile phase containing buffer (0.05M potassium dihydrogen ortho phosphate, ph-3.5): Methanol in the ratio of 25:75, C18 (250 x 4.6mm, 5 μ m) as a stationary phase and flow rate was 1 ml/min. Detection was carried out at 236nm in UV-2000 detector. The selected chromatographic conditions were found effectively to separate Miconazole and Ornidazole at 6.58 and 3.26 min respectively. The proposed method has been validated for precision, accuracy, robustness. Thus, the statistical analysis confirms that developed methods were successfully used for analysis of formulation and thereby can be used for routine analysis of drugs in Quality Control laboratories.

KEYWORDS: RP-HPLC, Miconazole, Ornidazole, Stability Indicating, Validation.

INTRODUCTION

Miconazole-1-(2-(2,4-Dichlorobenzyloxy)-2-(2,4dichlorophenyl)ethyl)-1H-imidazole is topical imidazole antifungal agent and Ornidazole - 1-Chloro-3-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ol is nitro imidazole anti amoebic and anti infective agent. Structure of MIC and ORN is shown in Fig.1 and Fig. 2.^[1-6] They are used in vaginitis. This combination is used synergistically by preventing the growth of fungi and increasing cellular permeability and inhibiting the growth of microorganism. This Combination is official in IP-2014, U.S.P-32; N.F.-30, B.P.-2010.^[1-3] As per literature survey, methods like RP-HPLC, stability, UV spectrophotometric methods^[9-14] have been reported for Miconazole and ornidazole individually. But there is no any method have been reported for stability indicating RP-HPLC method for simultaneous estimation of both the drugs in pharmaceutical dosage form. With the advent of International Conference on Harmonization (ICH) guidelines, the requirement of establishment of stability -indicating assay method (SIAM) has become more clearly mandated. The guidelines explicitly require conduct of forced decomposition studies under a variety of conditions, like pH, light, oxidation, etc. and separation of drug from degradation products. Thus the objectives of this work is to develop a new sensitive stability indicating RP-HPLC method for simultaneous determination of miconazole and ornidazole in mixture.

Also it is validated for market product containing miconazole and ornidazole in tablet dosage form.

MATERIALS AND METHODS

Standard Miconazole and Ornidazole were obtained as gift sample from Pharma Supply Agencies, Navrangpura, Ahmedabad; Thermoseparation (gradient) chromatograph with UV 2000 detector was used with Data Ace Software. Methanol and Acetonitrile - HPLC grade, Water - HPLC grade, Merck India Ltd., Mumbai, was used. A commercial tablet formulation CANDIFEM was purchased from local market.

Selection of Detection wavelength

Solution of 5μ g/ml and 25μ g/ml of each MIC and ORN were prepared and scanned over the range 200-400 nm and the spectra were recorded. Wavelength 236 nm (at which both the drugs showed good absorbance) was selected as detection wavelength (figure 3).

Selection of Mobile phase

Std stock solutionn of ORN: 25mg of ORN dissolved in 100ml with Methanol gives 250µg/ml

Std stock solution of MIC: 50mg of MIC dissolved in 100ml with Methanol gives 500µg/ml. Further 1 ml is dissolved in 10ml gives 50µg/ml.

Stock solution of the drugs prepared by dissolving 50 mg

of MIC and 25 mg of ORN with 100 ml of methanol to

give standard solution of MIC and ORN of 50µg/ml and

Preparation of standard and stock solution

250µg/ml respectively.

Working Standard Preparation (Combine standard preparation)

Take 1ml from ORN stock and 1ml from MIC std stock soln and dilute with 10ml with Mobile phase (mobile phase which used for trials) (ORN-25mcg/ml, MIC-5mcg/ml). Inject above working std preparation for mobile phase selection Chromatogram in optimized mobile phase is shown in Fig. 4.

Optimized Chromatographic Conditions

C₁₈ (250 x 4.6mm, 5µm) Column buffer(0.05M potassium dihydrogen ortho Mobile Phase phosphate, ph-3.5):Methanol in the ratio of 25:75 Flow rate 1 ml/min 236 nm Detection **Column Temperature** 30°C Miconazole and Ornidazole at 6.58 and 3.26 min **Retention Time** respectively Run Time 10min Injection volume (loop) 20 µl

METHOD VALIDATION

Linearity

MIC and ORN Calibration curve of were chromatographed over the range of 2.5-7.5 µg/ml and 12.5-37.5µg/ml respectively. The calibration curve was linear and regression analysis was obtained. Linearity plots were shown in Fig. 5 and Fig. 6. Results for linearity are shown in table 1.

Accuracy (Recovery study)

Accuracy of an analysis is determined by calculating systemic error involved. Recovery of MIC & ORN were calculated by standard addition method at three different concentration levels of drug. Accuracy was determined at three different level 80 %, 100% and 120 % of the target concentration 5 µg/ml of MIC and 25 µg/ml of ORN in triplicate and calculating % recovery. Results are shown in table 2.

Precision

Repeatability was assessed by analyzing six injection of a homogeneous sample of 5µg/ml of MIC and 25µg/ml of ORN. Intra-day precision was performed using three different concentration 2.5µg/ml, 5µg/ml, 7.5µg/ml for MIC and 12.5µg/ml, 25µg/ml, 37.5µg/ml for ORN in triplicate at three different time interval in a day. Interday precision was performed using three different concentration 2.5µg/ml, 5µg/ml, 7.5µg/ml for MIC and 12.5µg/ml, 25µg/ml, 37.5µg/ml for ORN in triplicate for three consecutive days. (Table 3).

LOD and LOQ

LOD and LOQ of the drug were calculated from signalto-noise ratio (i.e. 3.3 for LOD and 10 for LOQ) The results were shown in table 4.

Robustness

Inject working std preparation for different flow rate, different pH and different mobile phase composition:

Flow rate: 0.2ml/mint Buffer pH: +0.2pH and -0.2pH Solvent % in mobile phase: +2% solvent and -2% solvent in mobile phase. The results were shown in table 5.

System suitability

It is defined as tests to measure the method that can generate result of acceptable accuracy and precision. The system suitability was carried out after the method development and validation have been completed. For this, parameters like Plate number (N), Resolution (R), tailing factor, Capacity factor, HETP, Peak symmetry of samples were measured. The results were shown in table 6.

Specificity

Commonly used excipients in tablet preparation were spiked in a pre-weighed quantity of drugs and then area was measured and calculations carried out to determine the quantity of the drugs.

Assay of marketed formulation

For analysis of the tablet dosage form, twenty tablets were weighted individually and their average weight was determined after that they were crushed to fine powders. Take tablet powder equivalent to 25mg ORN/5mg MIC in to a 100ml volumetric flask. Add 60 ml Methanol. Shake for 15 minutes and sonicate for 10 minutes. Make up volume with Methanol. Filter this solution with Whatman filter paper no-1. (ORN-250µg/ml, MIC-50µg/ml).

Working sample preparation

Take 1ml from sample stock solution into a 10ml and make up with mobile phase. (ORN-25µg/ml, MIC-5µg/ml). The solution contains Miconazole and Ornidazole in the proportions of 1: 5.

+0.2ml/mint and -

The assay procedure was made in triplicate and % drug was calculated. Results are shown in table 7 and figure 6.

FORCED DEGRADATION

Acid degradation

Forced degradation in acidic medium was performed by pipette out 1ml stock solution each of Miconazole (MIC) and Ornidazole (ORN) in separate 25 ml volumetric flasks, add 5 ml of 1 N HCl to each flask. Flasks were heated at 50°C for 2 hrs and allowed to cool at room temperature. Solutions were neutralized with 1 N NaOH and volume was adjusted to the mark with methanol. Aliquot of 1 ml was pipette out from above solutions in separate 10 ml volumetric flasks and volume was adjusted to the mark with mobile phase to obtain final concentration of 5µg/ml of Miconazole (MIC) and 25µg/ml Ornidazole (ORN) respectively. The final solutions were analyzed under the proposed chromatographic conditions and chromatograms recorded. The amounts of drugs remain un-degraded were computed using regression equation. Same procedure was carried out for Miconazole (MIC) and Ornidazole (ORN) in mixture as per above forced degradation condition.

Base degradation

Forced degradation in basic medium was performed by pipette out 1ml stock solution each of Miconazole (MIC) and Ornidazole (ORN) in separate 25 ml volumetric flasks, add 5 ml of 1 N NaOH to each flask. Flasks were heated at 50°C for 1 hr and allowed to cool at room temperature. Solutions were neutralized with 1 N HCl and volume was adjusted to the mark with methanol. Aliquot of 1 ml was pipette out from above solutions in separate 10 ml volumetric flasks and volume was adjusted to the mark with mobile phase to obtain final concentration of 5µg/ml of Miconazole (MIC) and 25µg/ml Ornidazole (ORN) respectively. The final analyzed solutions were under the proposed chromatographic conditions and chromatograms recorded. The amounts of drugs remain un-degraded were computed using regression equation. Same procedure was carried out for Miconazole (MIC) and Ornidazole (ORN) in mixture as per above forced degradation condition.

Neutral Hydrolysis

Forced degradation in neutral medium was performed by pipette out 1ml stock solution each of Miconazole (MIC) and Ornidazole (ORN) in separate 25 ml volumetric flasks, add 10 ml of double distil water to each flask. Flasks were heated at 50°C for 2 hrs and allowed to cool at room temperature. The volume was adjusted to the mark with methanol. Aliquot of 1 ml was pipette out from above solutions in separate 10 ml volumetric flasks and volume was adjusted to the mark with mobile phase to obtain final concentration of 5µg/ml of Miconazole (MIC) and 25µg/ml Ornidazole (ORN) respectively. The final solutions were analyzed under the proposed chromatographic conditions and chromatograms

recorded. The amounts of drugs remain un-degraded were computed using regression equation. Same procedure was carried out for Miconazole (MIC) and Ornidazole (ORN) in mixture as per above forced degradation condition.

Oxidative degradation

To perform oxidative stress degradation, pipette 1 ml stock solution each of Miconazole (MIC) and Ornidazole (ORN) in separate 25 ml volumetric flasks and add 5 ml of 6% H₂O₂. Flasks were heated at 50°C for 2 hrs and allowed to cool at room temperature and volume was adjusted to the mark with methanol. Aliquot of 1 ml was pipette out from above solutions in separate 10 ml volumetric flasks and volume was adjusted to the mark with mobile phase to obtain final concentration of 5µg/ml of Miconazole (MIC) and 25µg/ml Ornidazole (ORN) respectively. The final solution were analyzed under the proposed chromatographic conditions and chromatograms recorded. The amounts of drugs remain undegraded were computed using regression equation. Same procedure was carried out for Miconazole (MIC) and Ornidazole (ORN) in mixture as per above forced degradation condition.

Thermal degradation

To study dry heat degradation, 50 mg each of Miconazole (MIC) and 25 mg of Ornidazole (ORN) were weighed and transferred in separate 25 ml volumetric flasks. The solid drugs were exposed in oven at 50° C for 2 hrs. The solids were allowed to cool and dissolved in few ml of methanol and transfer in 10 ml volumetric flask at last volume was made up to the mark of 100ml with the methanol. Aliquot of 1 ml from above solutions were transferred to separate 10 ml volumetric flasks and volume was adjusted to the mark with methanol to obtain final concentration of 5µg/ml of Miconazole (MIC) and 25µg/ml Ornidazole (ORN) respectively. The final solution was analyzed under the proposed chromatographic conditions chromatograms and recorded. The amounts of undegraded drugs were computed using regression equation. Same procedure was carried out for Miconazole (MIC) and Ornidazole (ORN) in mixture as per above forced degradation condition.

Photolytic degradation

To study photo degradation, 50 mg each of Miconazole (MIC) and 25mg of Ornidazole (ORN) were weighed, transferred in separate petridish. The solid drugs were exposed to sunlight for 72 hrs. Furthermore, a stress degradation study in direct UV radiation was performed by exposing the solid drugs of MIC and ORN and their mixture to UV radiation at 254 or 365 nm for 2 h at room temperature.

The solids were allowed to cool and dissolved in few ml of methanol and transfer in 10 ml volumetric flask at last volume was made up to the mark of 100ml with the methanol. Aliquot of 1 ml from above solutions were transferred to separate 10 ml volumetric flasks and volume was adjusted to the mark with methanol to obtain final concentration of 5µg/ml of Miconazole (MIC) and 25µg/ml Ornidazole (ORN) respectively. The final analyzed under solution was the proposed chromatographic conditions and chromatograms recorded. The amounts of undegraded drugs were computed using regression equation. Same procedure was carried out for Miconazole (MIC) and Ornidazole (ORN) in mixture as per above forced degradation condition.

RESULT AND DISCUSSION

The present work aimed development and validation of stability indicating RP-HPLC method for simultaneous estimation of MIC and ORN. Method was developed in mobile phase containing buffer(0.05M potassium dihydrogen ortho phosphate, ph-3.5):Methanol in the ratio of 25:75. Detection was carried out at 236 nm. Method was validated as per ICH guidelines. Linearity

and regression data were shown in table 1 and Fig.4, 5. % recovery for MIC and ORN were within the range (98% - 102%). Results were shown in table 2. Hence it is found that the developed method is accurate. %RSD values were <2 for repeatability, intra-day and inter-day precision. Results were shown in table 3. So, the developed method was found to be precise. LOD and LOQ values were shown in table 4. LOD & LOQ confirms the method to be sensitive. Small changes were carried out in mobile phase and flow rate for robustness study, in that % RSD of area was found to be <2. Results were shown in table 5.So, the developed method was found to be robust. Various forced degradation conditions were performed in proposed method and it can efficiently separate all the degradation products from the drugs. % degradation values are 5% to 20% degradation of the drug substance, have been considered as reasonable and acceptable for validation of chromatographic assays. Results were shown in table 8. So, the developed method is stability indicating.

 Table: 1. Statistical analysis data of calibration curve

Sr. no.	Miconazole (MIC)	Mean Peak	Ornidazole (ORN)	Mean Peak Area	
		Area *		*	
1	2.5	2000.337	12.5	2263.755	
2	3.75	3016.36	18.75	3410.475	
3	5	4050.77	25	4577.802	
4	6.25	4860.294	31.25	5510.737	
5	7.5	6082.623	37.5	6864.27	
	SD	98.5915	SD	100.2058	
	Slope	800.6	Slope	180.8	
	Regression Coefficient	0.99854	Regression	0.99882	
	(r ²)		Coefficient (r^2)		

Table 2: Accuracy

Level	Sample amount	(Standard) Drug added (μg/ml)	Drug Recovered (µg/ml) ^a	% Drug Recovered ± SD					
For Miconazole (MIC)									
80	2.5	2	2.0132	98.962 ± 1.127					
100	2.5	2.5	2.5054	100.553 ± 0.651					
120	2.5	3	2.9968	99.896 ± 0.603					
For Ornida	zole (ORN)								
80	125	10	10.0714	99.706 ± 1.06					
100	12.5	12.5	12.5354	100.292 ± 0.66					
120	12.5	15	14.9008	99.274 ± 0.53					

Table 3: Intraday and Interday Precision study for MIC and ORN

	Intraday Pr	Intraday Precision (MIC)					
Conc. (µg/ml)	Area	Average area	SD	%RSD			
2.5	1984.369	1987.712333	4.19242	0.21091			
	1986.352						
	1992.416						
5	4018.476	4026.534333	8.06050	0.200184			
	4026.53						
	4034.597						
7.5	6024.823	6041.05633	16.746122	0.277205			
	6040.074						
	6058.272						
Interday Precis	ion (MIC)						

2.5	1986.352	1990.363	4.022045	0.20207
	1990.341			
	1994.396			
5	4022.496	4030.555	8.0605	0.19998
	4030.553			
	4038.617			
7.5	6027.982	6040.088	12.1135	0.20055
	6040.074			
	6052.209			

n=Three determination.

Intraday and Interday Precision study for ORN

	Intraday Precision					
Conc. (µg/ml)	Area	Average area	SD	%RSD		
	2245.686					
12.5	2247.937	2248.4536	3.058902	0.136044		
	2251.738					
	4541.284					
25	4550.392	4548.9693	7.081995	0.155683		
	4555.232					
	6809.556					
37.5	6816.37	6817.6093	8.7391583	0.1281850		
	6826.902					
Interday Precisio	n					
	2247.937					
12.5	2252.439	2251.009	2.66284	0.11829		
	2252.652					
	4545.83					
25	4554.934	4553.359	6.87766	0.15104		
	4559.312					
	6802.719					
37.5	6816.37	6812.243	8.27243	0.12143		
	6817.64					

Repeatability data

Sr. no.	Miconazole (MIC) 5 µg/ml	Ornidazole (ORN) 25 µg/ml
1	4034.591	4559.521
2	4042.68	4568.662
3	4050.77	4564.741
4	4038.63	4564.082
5	4046.71	4573.218
6	4054.803	4581.133
Mean Peak Area	4044.697	4568.5595
SD	7.56403	7.695823042
% RSD	0.187011	0.168451851

Table 4: LOD and LOQ of MIC and ORN

Drug	LOD [µg/ml]	LOQ [µg/ml]
MIC	0.406	1.231
ORN	1.828	5.542

Table 5: Robustness study for MIC and ORN

Sr. No.	Area at M.P +2		Area at M.P -2		Area at pH +2		Area at pH -2	
	MIC	ORN	MIC	ORN	MIC	ORN	MIC	ORN
1	3925	4435	4131	4669	3852	4353	4127	4664
2	3949	4459	4155	4696	3876	4380	4151	4692
3	3977	4489	4180	4714	3900	4403	4176	4713

Avg. are	a 3950	4461	4156	4693	3876	4379	4151	4690
% RSD	0.6629	0.6012	0.5883	0.4829	0.62399	0.57866	0.58837	0.52108

Table: 6. System suitability data for the developed method

SYSTEM SUITABILITY PARAMETER	MIC	ORN		
Retention time (min)	6.563± (0.239)minute	$3.280 \pm (0.381)$ minute		
Resolution	12.202 ±(0.025)			
Asymmetric	$1.578 \pm (0.0093)$	$1.680 \pm (0.0025)$		
Theoretical Plates	$12031.15 \pm (91.43)$	$13215.21 \pm (41.71)$		

Table: 7. Assay of marketed formulation

l	Drug	Label Claim	Amount Found ⁿ (µg)	%MIC ⁿ ±SD	%ONR ⁿ ±SD	
	MIC	100	104.15	104 595 + 0 591	94.696 ± 0.498	
l	ONR	500	473.82	104.383 ± 0.381		

Table 8: Stability data

Stress	Miconazole (MIC)			Ornidazole (ORN)				
condition	Area	% deg Std	Area	% deg Samp	Area	% deg Std	Area	% deg Samp
Alkaline	3092.034	25.14	3124.597	24.35	3331.138	28.16	3293.079	28.98
hydrolysis	5072.051	23.11	5121.397	21.33	5551.150	20.10	5275.017	20.90
Acidic	3496,781	15.34	3536.327	14.38	3537.475	23.71	3514.56	24.21
hydrolysis	5470.701	15.54	3330.327	14.50	5557.475	23.71	5514.50	27.21
Oxidative Deg.	2941.445	28.78	2910.537	29.53	3038.669	34.47	3037.498	34.50
Dry heat	3070.441	25.66	3037.587	26.46	3723.532	19.70	3776.796	18.55
Photostab.	2770.557	32.92	2678.877	35.14	3723.546	19.70	3819.201	17.64

MIC Area of standard: 4637.109 ORN Area of standard: 4130.606

Table 9: Summary of validation parameters

PARAMETERS	MICONAZOLE	ORNIDAZOLE
Linear Range	2.5-7.5 μg/ ml	12.5-37.5 µg/ml
Regression Coefficient	0.9985	0.9988
Recovery %	100.18 % - 100.20 %	99.87 %- 99.90%
Repeatability (RSD, n=6)	0.1870	0.1684
Precision (RSD)		
Intra - day (n=3)	0.20-0.27%	0.12-0.15%
Inter - day (n=3)	0.19-0.20%	0.11-0.15%
Limit of Detection (µg/ml)	0.40638536	1.828978073
Limit of Quantitation (µg/ml)	1.231470788	5.542357798
Robustness	Robust	Robust
Specificity	Specific	Specific

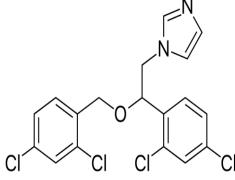


Fig: 1. Structure of Miconazole

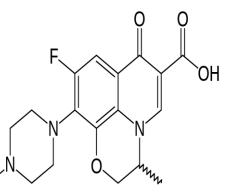


Fig: 2. Structure of Ornidazole

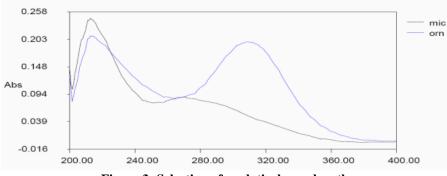
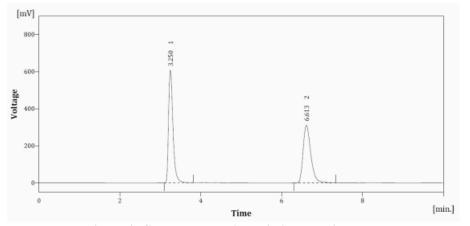
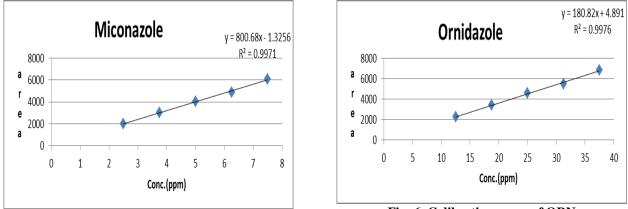
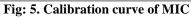
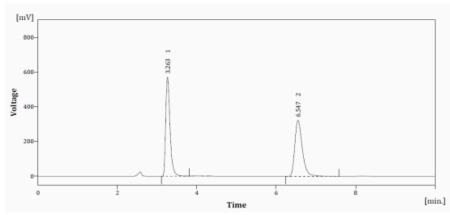
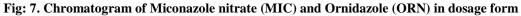


Figure 3: Selection of analytical wavelength


Figure 4: Chromatogram in optimized mobile phase

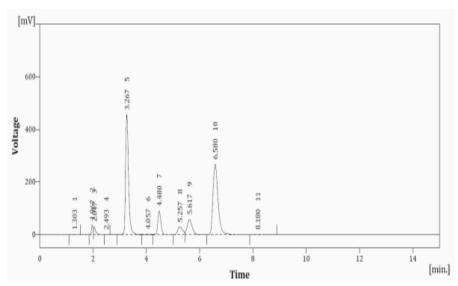
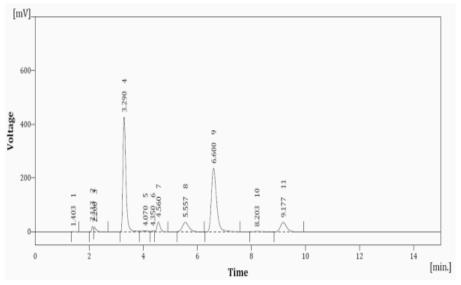
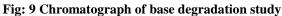




Fig: 8. Chromatograph of acid degradation study

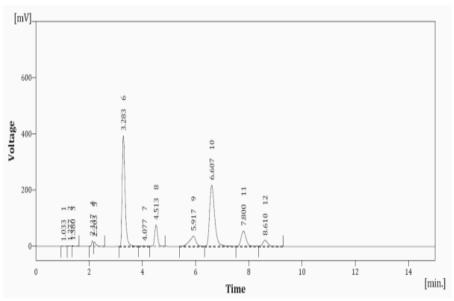


Fig: 10. Chromatograph of Oxidative degradation

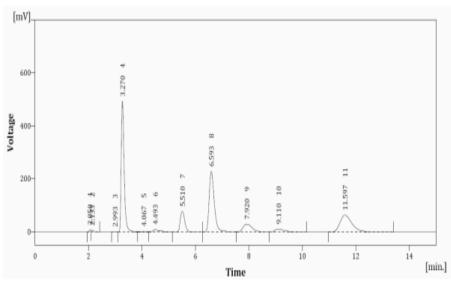
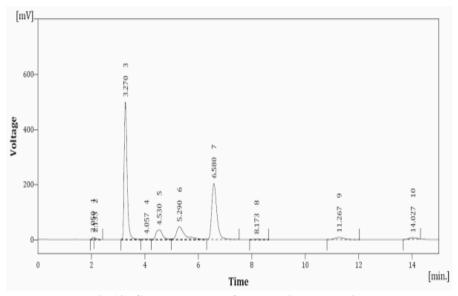
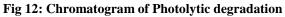
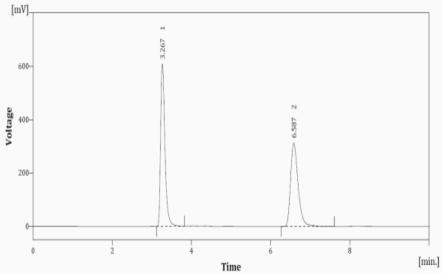
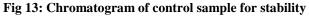






Fig 11: Chromatogram of Thermal degradation

Conflict of Interest: None. **Ethical Permission:** None.

Abbreviations

MIC- Miconazole ORN- Ornidazole µg- microgram

CONCLUSION

- > RP-HPLC method was developed using C_{18} (250 x 4.6mm, 5µm) column as a stationary phase and buffer (0.05M KH₂ PO₄, pH 3.5): Methanol in the ratio of 25:75 as mobile phase. The flow rate was maintained at 1 ml/ min and detection was carried out at 236 nm where miconazole and ornidazole have significant absorbance. The retention times of miconazole and ornidazole were 6.58 and 3.26 min respectively. RP-HPLC method is linear in the concentration range of 2.5-7.5 µg/ ml miconazole and 12.5-37.5 µg/ml ornidazole with correlation coefficient found to be 0.9985 for miconazole and 0.9988 for ornidazole. The recovery was in the range of 100.18% - 100.20% for miconazole and 99.87 %-99.90% for ornidazole. Limit of detection for miconazole and ornidazole was found to be 0.40 and 1.82 respectively. Limit of quantification for miconazole and ornidazole was found to be 1.23 and 5.54 µg/ml respectively. The method was found to be accurate, precise, specific, selective, repeatable, robust and reproducible. Forced degradation studies were carried out and degradation product peaks were well resolved from drug peaks. In stress study it was found that miconazole and ornidazole were degraded in alkali medium, acidic medium and oxidative stress condition where as in other stress condition slightly degraded. The method was validated and found to be sensitive, accurate and precise and stability indicating.
- The developed stability indicating RP-HPLC methods were validated for linearity, accuracy, method precision, selectivity, sensitivity and robustness. It was found to be simple, sensitive, accurate, precise and robust.
- The mean percentage assay for Miconazole nitrate (MIC) and Ornidazole (ORN) in tablet was found to be 104.58 % and 99.69% respectively.
- These developed RP-HPLC method can be used for routine analysis of miconazole and ornidazole in bulk and their pharmaceutical formulations.

ACKNOWLEDGEMENT

I am heartly thankful to Pharma Supply Agencies, Ahemedabad, for providing MIC and ORN as gift samples. I am also thankful to Prof. Bhumika Sakhreliya, Department of Quality Assurance for her constant support and guidance.

REFERENCES

- 1. Indian Pharmacopoeia. The Ministry of Health and Family welfare, Indian Pharmacopoeial Commission, Ghaziabad, II,III, 2010; 771-773.
- 2. United State Pharmacopeia. The United States Pharmacopoeial Conventional. II, III, 2011; 4026: 3298.
- 3. British Pharmacopoeia. Health Minister on the recommendation of the Commission on Human Medicines, 6 Th ed. II, III, 2010; 5026.
- 4. Martindale. The extra pharmacopoeia, published by Royal Pharmaceutical Society of Great Britain, 30th Edition, 1164-1170.
- The MERCK Index, Merck research Laboratories, U.S.A., 14th Ed, 6710: 3735.
- ICH, Stability Testing of New Drug Substances and Products, Q1A (R2). International Conference on Harmonization, IFPMA, Geneva, 2003.
- ICH, Validation of analytical procedures: text and methodology Q2 (R1), International Conference on Harmonization, IFPMA, Geneva, 2003.
- Solanki NN, Patel PB, RP-HPLC method for simultaneous estimation of Ornidazole and Miconazole in tablet dosage form, Inventi Rapid, Pharma Analysis & Quality Assurance, 2016; 3: 1-5.
- De Zan M.M., Cámara M.S., Robles J.C., Development and validation of a simple stability indicating high performance liquid chromatographic method for the determination of miconazole nitrate in bulk and cream formulations. Talanta, 2009; 79(3): 762-767.
- N. O'Connor, M. Geary, M. Wharton, P. Sweetman; The Determination of Miconazole and its Related Production Impurities Together with Basic Solution Stability Studies Using a Sub 2 μm Chromatographic Column. J Chromatogr Sci., 2012; 50(3): 199-205. Doi: 10.1093/chromsci/bmr047.
- 11. Pagare PK, Satpute CS, Jadhav VM, Kadam V. Forced degradation studies and validated stability indicating HPTLC method for determination of miconazole nitrate in soft lozenges. Der Pharmacia Lettre, 2012; 4(6): 1793-1804.
- Mousa, B.A., El-Kousy, N.M., El-Bagary, R.I., Mohamed, N.G.; Stability indicating methods for the determination of some antifungal agents using densitometric and RP-HPLC methods; Chemical and Pharmaceutical Bulletin, 2008; 56(2): 143–149.
- G. Mubeen, Vineeta Prakash, P.L Somashekar, Kadri Uvesh; Spectrophotometric Method for Determination of Ornidazole; Int.J. Chem Tech Res., 2009; 1(2): 318-321.
- Bakshi M, Singh B, Singh A, Singh S; The ICH guidance in practice: stress degradation studies on ornidazole and development of a validated stabilityindicating assay; J Pharm Biomed Anal, 2001; 26(5-6): 891-7.