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Abstract
This article addresses the implementation of the new generalized 

(

G
�∕G

)

-expansion 
method to the Caudrey–Dodd–Gibbon (CDG) equation and the Lax equation which 
are associated with the fifth-order KdV (fKdV) equation. The method works well to 
derive a variety of standard and functional closed-form wave solutions with distinct 
physical structures, such as, soliton, kink, periodic soliton, and bell-shaped soliton 
solutions. The solutions obtained using this method are useful and adequate than 
other methods. In order to understand the physical aspects and importance of the 
method, the attained solutions have been simulated graphically. The extracted results 
definitely establish that the new generalized 

(

G
�∕G

)

-expansion method is an effec-
tive mathematical tool to work out new solutions to different types of local nonlinear 
evolution equations emerging in applied science and engineering, but this method is 
not effective in solving nonlocal equations.
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1 Introduction

It is well established that almost every instinctual phenomenon is nonlinear and 
mathematically appears in the form of nonlinear evolution equations (NLEEs). The 
studies of NLEEs, a special type of nonlinear partial differential equations (NPDEs), 
become one of the most exciting and highly active areas of research and investiga-
tion, because problems in various scientific and engineering fields, such as, solid 
state physics, chemical physics, plasma physics, optics, biology, chemical kinemat-
ics, geochemistry, fluid mechanics and hydrodynamics, are frequently described 
by NLEEs. In order to understand the inner structure of these phenomena, finding 
closed-form soliton solutions is becoming more fascinating day-by-day. But there is 
no integrated method which could be utilized to deal with all types of NLEEs. That 
is why a variety of efficient and reliable methods have been developed, videlicet, the 
Painleve expansion method [1], the inverse scattering method [2, 3], the Darboux 
transformation method [4, 5], the Cole–Hopf transformation method [6, 7] the Jac-
obi elliptic function method [8, 9], the Hirota’s bilinear transformation method [10, 
11], the Backlund transformation method [12, 13], the sine–cosine method [14], the 
tanh function method [15–17], the F-expansion method [18], the Kudryashov [19], 
the exp-function method [20], the exp(−�(�))-expansion method [21], the modi-
fied simple equation method [22], the 

(

G�∕G
)

-expansion method [23–26], the new 
generalized 

(

G�∕G
)

-expansion method [27, 28], the double 
(

G�∕G, 1∕G
)

- expansion 
method [29], etc.

This article is concerned with the Caudrey–Dodd–Gibbon (CDG) equation and 
the Lax equation that are used to model nonlinear dispersive waves in diverse sci-
entific fields such as laser optics, plasma physics. The CDG equation is integrable 
nonlinear fifth-order equation and is of the form [30, 31]:

The fifth-order Lax equation is also nonlinear integrable equation and is of the 
form [32]:

These two equations have been shown to be related to the integrable cases of 
the Henon–Heiles [33] system. However, Eqs.  (1) and (2) have been studied suc-
cessively in a series of articles [17, 34–47]. Wazwaz investigated different types of 
solutions of Eqs.  (1) and (2) by using several methods, namely, the tanh function 
method [17, 34, 35], the sine–cosine method [35], the extended tanh method [36], 
the tanh–coth method [37], the Hirota’s bilinear method [38, 39], etc. The obtained 
solutions include periodic, soliton and multiple soliton, etc. Moreover, closed-form 
solitary wave solutions to the CDG equation and the Lax equation were derived by 
Bilige and Chaolu by using the extended simplest equation method [40]. Further-
more, solutions of Eq.  (1) examined by Salas [41] by using the projective Riccati 
equation method, Xu et  al. [42] employed the exp-function method, Gomez and 
Salas [43] utilized the generalized tanh-coth method, Jin [44] applied the variational 
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iteration method, Naher et al. [24] implemented the 
(

G�∕G
)

-expansion method and 
Bisaws et al. [45] used the modified F-expansion method, exp-function method as 
well as the 

(

G�∕G
)

 method. Also, solutions of Eq. (2) investigated by Abbasbandy 
and Zakaria [46] by means of the homotopy analysis method and Gomez [47] used 
the generalized extended tanh method. However, no one studied the solutions to 
the aforesaid equations through the new generalized 

(

G�∕G
)

-expansion method. In 
this article, our aim is to investigate Eqs. (1) and (2) by using the new generalized 
(

G�∕G
)

-expansion method and establish further closed-form solitary wave solutions 
which include singular soliton, kink, singular kink, bell-shaped soliton, anti-bell-
shaped soliton, periodic, and bell-type solitary wave solutions.

This article is organized as follows: In Sect. 2, we have reviewed briefly the new 
generalized 

(

G�∕G
)

-expansion method. In Sect. 3, we have presented the application 
of the method to Eqs. (1) and (2) to extracted abundant closed-form solitary wave 
solutions. In Sect. 4, we have provided the physical explanation and graphical pres-
entation of the obtained solutions. Finally, in Sect. 5, conclusions are drawn.

2  The new generalized 
(

G
�∕G

)

‑expansion method

Let us consider a general NLEE in the form

where u = u(x, t) is an unspecified function, P is a polynomial in u(x, t) and its partial 
derivatives wherein the highest order derivatives and the nonlinear terms are associ-
ated. The key steps of the new generalized (G�∕G)-expansion method are given in 
the succeeding:

Step 1 We suppose that the combination of spatial variables x and the temporal t 
by a compound variable � as follows:

where c is the speed of the solitary wave. The wave transformation (4) allows us to 
moderate Eq. (3) to an ordinary differential equation (ODE) for u = u(�) in the form:

wherein R is a function of u(�) and the superscripts indicate the ordinary derivatives 
regarding to �.

Step 2 In particular case, sometimes Eq. (5) can be integrated term by term one or 
more times, yields zero integral constant(s).

Step 3 We assume that the closed-form solitary wave solution of (5) can be 
revealed as follows, in accordance with the new generalized 

(

G�∕G
)

-expand method:

(3)P
(

u, u
t
, u

x
, u

tt
, u

tx
, u

xx
,…

)

= 0

(4)u(x, t) = u(�), � = x − ct

(5)R
(

u, u
�, u

��, u
���,…

)

= 0

(6)u(�) =

N
∑

k=0

a
k(d + Y(�))k +

N
∑

k=1

b
k(d + Y(�))−k
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in which either a
N

 or b
N

 may be zero, but both a
N

 and b
N

 cannot be zero at a time, 
a

k
 , b

k(k = 0, 1, 2, 3,…N) and d are indefinite constants to be calculated afterword 
and Y(�) is given by

where in G = G(�) satisfies the next auxiliary nonlinear differential equation

where prime specifies the derivative with respect to � and A, B, C, E are real 
parameters.

Step 4 The number of terms in (6) will be fixed by the value of N , and its value 
will be determined by the homogeneous balancing principle.

Step 5 Inserting solution Eq.  (6) along with (8) including (7) into (5) in 
conjunction with the value of N attained in Step 4, we reach a polynomial in 
(d + Y)N , and (d + Y)−N , (N = 1, 2, …) . We set each coefficient of the resulting 
polynomial to zero, yield an over-determined set of algebraic equations for a

k
 , 

b
k(k = 1, 2, … , N) , d and c.

Step 6: We stare that the value of the constants can be determined by solving 
the algebraic equations achieved in Step 5. Since the general solution of (8) is in 
general known, inserting the value of a

k(k = 0, 1, 2, … , N) , bk(k = 1, 2, … , N) , d 
and c into solution (6) yields the comprehensive and newly produced exact trave-
ling wave solutions to the nonlinear evolution Eq. (3).

Step 7 By means of the general solution of Eq.  (8), we admits the following 
solution of Eq. (7).

Family 1: When B = 0 , � = A − C and Ω = E𝜓 > 0,

Family 2: When B = 0 , � = A − C and Ω = E𝜓 < 0,

Family 3: When B ≠ 0 , � = A − C and Δ = B2 + 4E(A − C) > 0,

Family 4: When B ≠ 0,
� = A − C and Δ = B2 + 4E(A − C) < 0,

(7)Y(�) =
(

G
�∕G

)

,

(8)AGG
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�
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Family 5: When B ≠ 0 , � = A − C and Δ = B2 + 4E(A − C) = 0,

3  Formulation of the solutions

In this section, we will analyze two NLEEs, namely, the Caudrey–Dodd–Gibbon 
(CDG) equation and the Lax equation and establish useful solutions by using the 
new generalized 

(

G�∕G
)

-expansion method described in Sect. 2.

3.1  The Caudrey–Dodd–Gibbon equation

In this sub-section, we will study the nonlinear CDG Eq. (1). The CDG equation can 
be written in the form [30, 31]:

My means of the wave transformation u(x, t) = u(�) , � = x − ct , Eq. (14) reduces 
to the ordinary differential equation

On integrating (15) with respect to � once and letting the constant of integration 
to zero, we obtain

According to the method described in Sect.  2, and after balancing, we obtain 
N = 2. Therefore, the solution of (16) turns into the form

where a0, a1, a2, b1, b2 and d are constants to be determined later on.
Now introducing (17) into (16) including (7) and (8), the left hand side of Eq. (16) 

is translated into the polynomial in (d + Y)N and (d + Y)−N , (N = 1, 2, …) . Equaliz-
ing the cohorts of this polynomial to zero, we obtain an algebraic system (for sim-
plicity, we leave out in displaying the equations) with respect to a0, a1, a2, b1, b2, c 
and d.

Solving the system of algebraic equations with the aid of the Maple 17, we obtain 
the following sets of distinct solutions of parameters a0, a1, a2, b1, b2, c and d:

(12)Y(�) =

�
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(iv) + 30uu

��

+ 60u
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(17)u(�) = a0 + a1(d + Y) + a2(d + Y)2 + b1(d + Y)−1 + b2(d + Y)−2
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Case 1

where � = A − C , Ω = E� , d, A, B, C and E are free parameters.
Case 2

where � = A − C , Ω = E� , d, A, B, C and E are free parameters.
Case 3

where � = A − C,Ω = E� , d, A, B, C and E are free parameters.
Case 4

where � = A − C,Ω = E� , d, A, B, C and E are free parameters.
Case 5

where � = A − C,Ω = E� , A, B, C and E are free parameters.
Case 6

(18)
a0 = −

d2�2 + (Bd − E)�

A2
, a1 =

2d�2 + B�

A2
, a2 = −

�2

A2
, b1 = 0, b2 = 0, c =

(

B2 + 4Ω
)2

A4

(19)

a0 = −
d2�2 + (Bd − E)�

A2
, a1 = 0, a2 = 0,

b1 =
d�

(

2d2� + 3Bd − 2E
)

+ B(Bd − E)

A2
,

c =

(

B2 + 4Ω
)2

A2
, b2 = −

d�
(

d3� + 2d2B − 2dE
)

+ (Bd − E)2

A2

(20)

a0 =
−d�(d� + B) +

1

2

�

1 ±
√

105

15

�

Ω −
1

8

�

1 ±
√

105

15

�

B2

A2
, a1 =

2d�2 + B�

A2
,

a2 = −
�2

A2
, b1 = 0, b2 = 0, c =

(11 ±
√

105)
�

B2 + 4Ω
�2

8A4

(21)
a0 =

−d�(d� + B) +
1

2

�

1 ±
√

105

15

�

Ω −
1

8

�

1 ±
√

105

15

�

B2

A2
, a1 = 0, a2 = 0

b1 =
d�

�

2d2� + 3Bd − 2E
�

+ B(Bd − E)

A2

(22)
a0 =

(

B2 + 4Ω
)

2A2
, a1 = 0, a2 = −

�2

A2
,

b1 = 0, b2 = −

(

B2 + 4Ω
)2

16A2�2
, c =

16
(

B2 + 4Ω
)2

A4
, d = −

B

2�
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where � = A − C,Ω = E� , A, B, C and E are free parameters.
For Case 1
Inserting the values of the parameters assembled in (18) into solution (17) and 

combining the solutions (9) to (13) and simplifying, we attain the following closed-
form solitary wave solutions for r = 0 but s ≠ 0 , respectively.

 where �1 = −
d2�2+(Bd−E)�

A2
,�2 =

2d�2+B�

A2
 and � = x −

(B2+4Ω)
2

A4
t.

In similar fashion, inserting the values of the parameters arranged in (18) into 
solution (17), and uniting the solutions (9–13) and simplifying, we acquire the sub-
sequent closed-form wave solutions for s = 0 but r ≠ 0 , respectively.

(23)
a0 =

√
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30A2
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�
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√
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,
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√
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�
√
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�
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,
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B
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√
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If s = 0 , then from (13) we admit to a constant (trivial) solution which has no 
physical use and thus, we did not recorded the solution here.

For Case 2
Proceeding as before, making use of the values of the parameters sort out in 

(19) into solution formula (17) along with solutions (9–13), we gain the following 
closed-form solitary wave solutions for r = 0 but s ≠ 0 , respectively.

u23(�) = �1 + �2

�

d +
B

2�
+

√

Δ

2�
coth

�√

Δ

2�
�

��−1

+ �3

�

d +
B

2�
+

√

Δ

2�
coth

�√

Δ

2�
�

��−2

,

 where � = x −
(B2+4Ω)

2

A4
t , �1 = −

d2�2+(Bd−E)�

A2
 , �2 =

2d3�2+3Bd2�−2dΩ+B(Bd−E)

A2
 , 

�3 = −
d4�2+2Bd3�−2EdΩ+(Bd−E)2

A2
.

Moreover, plugging in (19) into solution (17) and using the solutions (9–13), 
respectively, we attain the traveling wave solutions as for s = 0 but r ≠ 0.

u26(�) = �1 + �2

�

d +
√

Ω

�
tanh

�√

Ω

�
�
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�

d +
√

Ω

�
tanh

�√

Ω

�
�

��−2

,

u27(�) = �1 + �2

�

d −
√

−Ω

�
tan

�√

−Ω

�
�
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�
�
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�
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B
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√
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√

Δ

2�
�
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�
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√

Δ
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�
√

Δ
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�
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�
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√
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√
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�

��2

.
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�

d +

√

Ω

�
coth

�
√

Ω

�
�

��−1

+ �3

�

d +

√

Ω

�
coth

�
√

Ω

�
�

��−2

,

u22(�) = �1 + �2

�
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√

−Ω

�
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�
√
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�
�

��−1
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�
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√
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�
√

−Ω

�
�

��−2
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u28(�) = �1 + �2

�

d +
B

2�
+

√

Δ

2�
tanh

�√

Δ

2�
�

��−1

+ �3

�

d +
B
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+

√

Δ

2�
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Δ
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�
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,

u29(�) = �1 + �2

�

d +
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−

√
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�

√
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�
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�

d +
B
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−

√

−Δ

2�
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�

√

−Δ

2�
�

��−2

.
If s = 0 , then from (13) we admit to a constant solution and since constant is 

not physically accessible, we did not recorded the solution here.
For Case 3
Also, for case 3, placing the values of constants provided in (20) into solution 

formula (17) accompanied with (9–13) and after simplification, respectively, we 
find the following traveling solutions for r = 0 but s ≠ 0:

u31(�) = �1 + �2

�

d +
√

Ω

�
coth

�√

Ω

�
�
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−
�2
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�
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√

Ω

�
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�√

Ω

�
�

��2

,

u32(�) = �1 + �2

�

d +
√

−Ω

�
cot

�√

−Ω

�
�

��

−
�2

A2

�

d +
√

−Ω

�
cot

�√

−Ω

�
�

��2

,

u33(�) = �1 + �2

�

d +
B

2�
+

√

Δ

2�
coth

�√

Δ

2�
�

��

−
�2

A2

�

d +
B

2�
+

√

Δ

2�
coth

�√

Δ

2�
�

��2

,

u34(�) = �1 + �2

�

d +
B

2�
+

√

−Δ

2�
cot

�√

−Δ

2�
�

��

−
�2

A2

�

d +
B

2�
+

√

−Δ

2�
cot

�√

−Δ

2�
�

��2

,
u35(�) = �1 + �2

[

d +
B

2�
+

1

�

]

−
�2

A2

[

d +
B

2�
+

1

�

]2

, W h e r e 

� = x −

�

11±
√

105
�

(B2+4Ω)
2

8A4
t , �1 =

−d2�2−Bd�+
1

2

�

1±

√

105

15

�

Ω−
1

8

�

1±

√

105

15

�

B2

A2
 , �2 =

2d�2+B�

A2
.

Furthermore, substituting (20) into solution (17) along with (9–13) and simpli-
fying, respectively, we find the following traveling solutions for s = 0 but r ≠ 0.

u36(�) = �1 + �2

�

d +
√

Ω

�
tanh

�√

Ω

�
�

��

−
�2

A2

�

d +
√

Ω

�
tanh

�√

Ω

�
�

��2

,

u37(�) = �1 + �2

�

d −
√

−Ω

�
tan

�√

−Ω

�
�

��

−
�2

A2

�

d −
√

−Ω

�
tan

�√

−Ω

�
�

��2

,

u38(�) = �1 + �2

�

d +
B

2�
+

√

Δ

2�
tanh

�√

Δ

2�
�

��

−
�2

A2

�

d +
B

2�
+

√

Δ

2�
tanh

�√

Δ

2�
�

��2

,

u39(�) = �1 + �2

�

d +
B

2�
−

√

−Δ

2�
tan

�√

−Δ

2�
�

��

−
�2

A2

�

d +
B

2�
−

√

−Δ

2�
tan

�√

−Δ

2�
�

��2

.When we combine (13) with solution (17), for s = 0 yields constant solution, 
therefore this solution has not been written here.

Similarly, cases 3–5 exert closed-form wave solutions to the CDG equation and 
for the sake of simplicity those solutions are not reported here.

3.2  The Lax equation

In this sub-section, we will study the nonlocal nonlinear fifth-order Lax Eq. (2). 
The fifth-order Lax equation is of the form [32]:

The wave variable � = x − ct renders Eq.  (24) into the following ODE for 
u(x, t) = v(�):

(24)u
t
+

�

�x

(

u
xxxx

+ 10uu
xx
+ 5

(

u
x

)2
+ 10u

3
)

= 0
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Integrating (25) and setting the integration constant to zero, we obtain

Balancing the highest order linear term v(iv) . and nonlinear term of the highest 
order v3 in Eq. (26), yields N = 2. Therefore, the solution shape of the Lax equa-
tion is identical to the solution shape (17) and thus has not been reiterated here.

Embedding (17) accompanied with (7) and (8) into (26), the left-hand side 
is converted into a polynomial in (d + Y)N , (N = 0, 1, 2, …) . and (d + Y)−N , 
(N = 1, 2, …) .. We draw together each coefficient of this resulted polynomial and 
setting them to zero yields an over-determined set of algebraic equations (for sim-
plicity, the equations are not presented here) for a0, a1, a2, b1, b2, c and d . Solving 
these algebraic equations with the help of symbolic computation software, such 
as, Maple 17, we obtain the following.

Set 1

where � = A − C,Ω = E� , d, A, B, C and E are free parameters.
Set 2

where � = A − C,Ω = E� , d, A, B, C and E are free parameters.
Set 3

(25)−cv
�

+
(

v
(iv) + 10vv

��

+ 5
(

v
�
)2

+ 10v
3
)�

= 0

(26)−cv + v
(iv) + 10vv

��

+ 5
(

v
�)2

+ 10v
3 = 0

(27)

a0 = −
2
(

d2�2 + (Bd − E)�
)

A2
, a1 = 0, a2 = 0,

b1 =
2
(

d�
(

2d2� + 3Bd − 2E
)

+ B(Bd − E)
)

A2
, c =

(

B2 + 4Ω
)2

A2
,

b2 = −
2
(

d�
(

d3� + 2Bd2 − 2Ed
)

+ (Bd − E)2
)

A2

(28)

a0 =

−2d�(d� + B) +
�

1 ±
1
√

5

�

Ω −
1

4

�

1 ±
1
√

5

�

B2

A2
, a1 = 0, a2 = 0,

b1 =
2
�

d�
�

2d2� + 3Bd − 2E
�

+ B(Bd − E)
�

A2
,

b2 = −
2
�

d�
�

d3� + 2Bd2 − 2Ed
�

+ (Bd − E)2
�

A2
,

c =
(3 ±

√

5)
�

B2 + 4Ω
�2

4A4
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where � = A − C,Ω = E� , d, A, B, C and E are free parameters.
Set 4

where � = A − C,Ω = E� , d, A, B, C and E are free parameters.
Set 5

where � = A − C,Ω = E� , A, B, C and E are free parameters.
Set 6

where � = A − C,Ω = E� , A, B, C and E are free parameters.
For Set 1
By using the values of the parameters from set 1 into solution (17) and combining 

with solutions (9–13), we obtain the following traveling wave solutions for r = 0 but 
s ≠ 0 , respectively.

v11(�) = �1 + �2

�

d +
√

Ω

�
coth

�√

Ω

�
�

��−1

+ �3

�

d +
√

Ω

�
coth

�√

Ω

�
�

��−2

,

v12(�) = �1 + �2

�

d +
√

−Ω

�
cot

�√

−Ω

�
�

��−1

+ �3

�

d +
√

−Ω

�
cot

�√

−Ω

�
�

��−2

,

v13(�) = �1 + �2

�

d +
B

2�
+

√

Δ

2�
coth

�

√

Δ

2�
�

��−1

+ �3

�

d +
B

2�
+

√

Δ

2�
coth

�

√

Δ

2�
�

��−2

,

v14(�) = �1 + �2

�

d +
B

2�
+

√

−Δ

2�
cot

�

√

−Δ

2�
�

��−1

+ �3

�

d +
B

2�
+

√

−Δ

2�
cot

�

√

−Δ

2�
�

��−2

,

(29)

a0 =

−2d�(d� + B) +
�

1 ±
1
√

5

�

Ω −
1

4

�

1 ±
1
√

5

�

B2

A2
, a1 =

2
�

2d�2 + B�
�

A2
, a2 = −

2�2

A2
,

b1 = 0, b2 = 0, c =
(3 +

√

5)
�

B2 + 4Ω
�2

4A4

(30)
a0 = −

2
(

d2�2 + (Bd − E)�
)

A2
, a1 =

2
(

2d�2 + B�
)

A2
, a2 = −

2�2

A2

b1 = 0, b2 = 0, c =

(

B2 + 4Ω
)2

A4

(31)
a0 =

(

B2 + 4Ω
)

A2
, a1 = 0, a2 = −

2�2

A2
, b1 = 0, b2 = −

(

B2 + 4Ω
)2

8A2�2

c =
16

(

B2 + 4Ω
)2

A4
, d = −

B

2�

(32)
a1 = 0, a2 = −

2�2

A2
, b1 = 0, b2 = −

�

B2 + 4Ω
�2

8A2�2
,

c =
4(3 −

√

5)
�

B2 + 4Ω
�2

A4
, d = −

B

2�
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v15(�) = �1 + �2

[

d +
B

2�
+

1

�

]−1

+ �3

[

d +
B

2�
+

1

�

]−2

,wherein � = x −
(B2+4Ω)

2

A4
t , 

�1 = −
2(d2�2+(Bd−E)�)

A2
 , �2 =

2(d�(2d2�+3Bd−2E)+B(Bd−E))
A2

 , 

�3 = −
2(d�(d3�+2Bd2−2Ed)+(Bd−E)2)

A2
.

Again, by making use of the values of the constants arranged in (27) into solution 
(17), as well as solutions (9–13) and simplifying, we attain following traveling wave 
solutions for s = 0 but r ≠ 0 ,  respectively.

v16(�) = �1 + �2

�

d +
√

Ω

�
tanh

�√

Ω

�
�

��−1

+ �3

�

d +
√

Ω

�
tanh

�√

Ω

�
�

��−2

,

v17(�) = �1 + �2

�

d −
√

−Ω

�
tan

�√

−Ω

�
�

��−1

+ �3

�

d −
√

−Ω

�
tan

�√

−Ω

�
�

��−2

,

v18(�) = �1 + �2

�

d +
B

2�
+

√

Δ

2�
tanh

�√

Δ

2�
�

��−1

+ �3

�

d +
B

2�
+

√

Δ

2�
tanh

�√

Δ

2�
�

��−2,

v19(�) = �1 + �2

�

d +
B

2�
−

√

−Δ

2�
tan

�√

−Δ

2�
�

��−1

+ �3

�

d +
B

2�
−

√

−Δ

2�
tan

�√

−Δ

2�
�

��−2.When we com-
bine (27) with solution (17), for s = 0 yields constant solution, therefore this solu-
tion has not been written here.

For Set 2
In similar fashion, by the determined values of the constants, presenting in set 

2, putting into (17) accompanied with (9–13), respectively, we obtain the trave-
ling wave solutions for r = 0 but s ≠ 0 as follows:

v21(�) = �1 + �2

�

d +
√

Ω

�
coth

�√

Ω

�
�

��−1

+ �3

�

d +
√

Ω

�
coth

�√

Ω

�
�

��−2

,

v22(�) = �1 + �2

�

d +
√

−Ω

�
cot

�√

−Ω

�
�

��−1

+ �3

�

d +
√

−Ω

�
cot

�√

−Ω

�
�

��−2

,

v23(�) = �1 + �2

�

d +
B

2�
+

√

Δ

2�
coth

�√

Δ

2�
�

��−1

+ �3

�

d +
B

2�
+

√

Δ

2�
coth

�√

Δ

2�
�

��−2,

v24(�) = �1 + �2

�

d +
B

2�
+

√

−Δ

2�
cot

�
√

−Δ

2�
�

��−1

+ �3

�

d +
B

2�
+

√

−Δ

2�
cot

�
√

−Δ

2�
�

��−2,

v25(�) = �1 + �2

[

d +
B

2�
+

1

�

]−1

+ �3

[

d +
B

2�
+

1

�

]−2

, w h e r e 

�1 =
−2d�(d�+B)+

�

1±
1
√

5

�

Ω−
1

4

�

1±
1
√

5

�

B2

A2
 , �2 =

2(d�(2d2�+3Bd−2E)+B(Bd−E))
A2

 , 

�3 = −
2(d�(d3�+2Bd2−2Ed)+(Bd−E)2)

A2
 , � = x −

(3±
√

5)(B2+4Ω)
2

4A4
t.

Again setting (28) into solution (17) along with (9–13) and simplifying, we get 
following traveling wave solutions for s = 0 but r ≠ 0 ,  respectively.

v26(�) = �1 + �2

�

d +
√

Ω

�
tanh

�√

Ω

�
�

��−1

+ �3

�

d +
√

Ω

�
tanh

�√

Ω

�
�

��−2

,

v27(�) = �1 + �2

�

d −
√

−Ω

�
tan

�√

−Ω

�
�

��−1

+ �3

�

d −
√

−Ω

�
tan

�√

−Ω

�
�

��−2

,

v28(�) = �1 + �2

�

d +
B

2�
+

√

Δ

2�
tanh

�√

Δ

2�
�

��−1

+ �3

�

d +
B

2�
+

√

Δ

2�
tanh

�√

Δ

2�
�

��−2

,

v29(�) = �1 + �2

�

d +
B

2�
−

√

−Δ

2�
tan

�√

−Δ

2�
�

��−1

+ �3

�

d +
B

2�
−

√

−Δ

2�
tan

�√

−Δ

2�
�

��−2.
In the case when s = 0 , from (13) we attain constant solution and since steady 

is not physically usable, this solution has not been documented here.
For Set 3
By setting the values of the parameters organized in (29) into (27), together 

with solutions (9–13) and simplifying, we attained the traveling wave solutions as 
follows for r = 0 but s ≠ 0 , respectively.
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v35(�) = �1 + �2

[

d +
B

2�
+

1

�

]

−
2�2

A2

[

d +
B

2�
+

1

�

]2

, w h e r e 

�1 =
−2d�(d�+B)+

�

1−
1
√

5

�

Ω−
1

4

�

1+
1
√

5

�

B2

A2
,�2 =

2(2d�2+B�)
A2

 and � = x −
(3+

√

5)(B2+4Ω)
2

4A4
t.

We develop the ensuing closed-form solitary wave solutions for s = 0 but 
r ≠ 0 , respectively, by inserting (29) into (27) and using solutions from (9–13) 
and after simplification:

v36(�) = �1 + �2

�

d +
√

Ω

�
tanh

�√

Ω

�
�

��

−
2�2

A2

�

d +
√

Ω

�
tanh

�√

Ω

�
�

��2

,

v37(�) = �1 + �2

�

d −
√

−Ω

�
tan

�√

−Ω

�
�

��

−
2�2

A2

�

d −
√

−Ω

�
tan

�√

−Ω

�
�

��2

,

v38(�) = �1 + �2

�

d +
B

2�
+

√

Δ

2�
tanh

�√

Δ

2�
�

��

−
2�2

A2

�

d +
B

2�
+

√

Δ

2�
tanh

�√

Δ

2�
�

��2

,

v39(�) = �1 + �2

�

d +
B

2�
−

√

−Δ

2�
tan

�

√

−Δ

2�
�

��

−
2�2

A2

�

d +
B

2�
−

√

−Δ

2�
tan

�

√

−Δ

2�
�

��2

.
As (13) and (17) are combined, a constant solution for s = 0 is sought, but this solu-

tion is not written here, since it has no physical significance.
In a similar way, the remaining sets of parameter values contribute closed-form wave 

solutions of the Lax equation, but these are not presented here to elude pestering.

4  Comparison

Wazwaz examined the CDG equation through several methods, namely, the tanh func-
tion method [17, 34, 35], the extended tanh method [36], the tanh-coth method [37], 
and the sine–cosine method [35]. Since the tanh-coth function method is the gener-
alization of the tanh function method and the extended tanh function method, conse-
quently all the solutions attained by the procedures mentioned above can also be found 

v31(�) = �1 + �2

�

d +

√

Ω

�
coth

�
√

Ω

�
�

��

−
2�2

A2

�

d +

√

Ω

�
coth

�
√

Ω

�
�

��2

,

v32(�) = �1 + �2

�

d +

√

−Ω

�
cot

�
√

−Ω

�
�

��

−
2�2

A2

�

d +

√

−Ω

�
cot

�
√

−Ω

�
�

��2

,

v33(�) = �1 + �2

�

d +
B

2�
+

√

Δ

2�
coth

�
√

Δ

2�
�

��

−
2�2

A2

�

d +
B

2�
+

√

Δ

2�
coth

�
√

Δ

2�
�

��2

,

v34(�) = �1 + �2

�

d +
B

2�
+

√

−Δ

2�
cot

�
√

−Δ

2�
�

��

−
2�2

A2

�

d +
B

2�
+

√

−Δ

2�
cot

�
√

−Δ

2�
�

��2

,



 M. K. Alam et al.

1 3

  103  Page 14 of 19

through the tanh-coth function method. Therefore, we have compared the attained solu-
tions with those found by the tanh-coth function method only (Wazwaz [37]) in the 
underneath Table 1. 

It is observed from Table that the obtained solutions u11 , u15 , u31 and u35 are analo-
gous to the solutions u1 to u4 found by Wazwaz in [37]. It is also perceptible that we 
have attained six sets of solutions of the unidentified parameters and for each set of 
values we ascertain nine solutions. Consequently, we understand that it can be derived 
a total of fifty-four solutions. But for the sake of brevity, we have recorded only twenty-
seven solutions and the rest of the solutions have not been put down. On the other 
hand, Wazwaz [37] received only four solutions, all of which we derived. Besides, we 
have attained remaining fifty new general solutions. By setting specific values of the 

Fig. 1  a Is the modulus plot of singular solution u11(�) and b modulus plot of singular solution v11 (�)

Table 1  Comparison of the obtained solutions with the solutions found by Wazwaz in [37]

Solutions found in Wazwaz [37] Solutions found in this article

u1(x, t) = �2sech
2
(

�
(

x − 16�4t
))

u15(x, t) = �2sech
2
(

�
(

x − 16�4t
))

when d = 0 , B = 0 , � =
√

E(A − C)∕A , � =
√

E∕A − C

u2(x, t) = �2{� − tanh
2
(

�
(

x − ��4t
))

}

where � =
�

15 ±
√

105

�

∕30

and � = 22 ∓ 2
√

105

u35
(x, t) =

1

A2
{� − � tanh

2
(

�
(

x − ��4t
))

}

where � =
√

E(A − C)∕A,
� =

�

15 ±
√

105

�

∕30 , � = 22 ∓ 2
√

105

and � = E(A − C) , � =
√

E∕(A − C)

u3(x, t) = �2csch
2
(

�
(

x − 16�4t
))

u11
(x, t) = �2csch

2
(

�
(

x − 16�4t
))

,

when d = 0 , B = 0 , � =
√

E(A − C)∕A , � =
√

E∕A − C

u4(x, t) = �2{� − coth
2
(

�
(

x − ��4t
))

}

where � =
�

15 ±
√

105

�

∕30

and � = 22 ∓ 2
√

105

u3(x, t) =
1

A2
{� − � tanh

2
(

�
(

x − ��4t
))

}

where � =
√

E(A − C)∕A,

� =
�

15 ±
√

105

�

∕30 , � = 22 ∓ 2
√

105

and � = E(A − C) , � =
√

E∕(A − C)
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parameters, we will get many new solutions from these general solutions. That is the 
specialty of this method.

Analogously, it can be demonstrated that the solutions obtained by means of the new 
generalized 

(

G�∕G
)

-expansion method transcend all the solutions obtained in the refer-
ences [17, 34–40]. Also, we might show that all the solutions of the Lax equation found 
in Ref. [41–47] can be found by the new generalized 

(

G�∕G
)

-expansion method and 

Fig. 2  a Is the kink-shaped soliton of solution v18(�) and b is the singular kink-shaped soliton of u16(�)

Fig. 3  a Is the bell-shaped soliton of solution u33(�) and b is the anti-bell-shaped soliton solution u36(�)

Fig. 4  demonstrates the bell-
shaped solitary wave of solution 
v16(�)
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some additional solutions will also be found. For simplicity, the comparison Table has 
not been provided.

5  Graphical representations and physical explanation

Herein, we put forth to represent some three-dimensional figures of the modulus 
of the extracted solutions of the CDG equation and Lax equation. Figures are 
constructed by choosing suitable values of the parameters in order to apprehend 
the internal mechanism of the physical phenomena modulated by Eqs. (1) and (2) 
with the help of mathematical software Maple 17.

From the obtained solutions, we observe that solutions 
u11(�), u12(�), u13(�), u14(�) and u29(�) of the CDG equation and v19(�) of the 
Lax equation are singular solitons. Figure  1a shows the shape of the singular 
soliton solution u11(�) for d = 1, A = 2, B = 0, C = 1, E = 1 within the interval 
−10 ≤ x, t ≤ 10 . Moreover, the solutions u21(�) and u22(�) of the CDG equation 
and v11(�) and v12(�) of Lax equation represent soliton solutions. The plot of 
soliton profile of v11(�) for d = −10 , A = 2 , B = 0 , C = 1 , E = 1 within the inter-
val −10 ≤ x, t ≤ 10 is displayed in Fig. 1b.

Also, solutions v18(�) , v28(�) , v31(�) , v33(�) , v36(�) and v38(�) illustrate the kink-
shaped soliton solutions. For compactness, only kink-shaped soliton solution 
v18(�) has been plotted and presented in Fig. 2a for the definite values of param-
eters d = −1 , A = 2 , B = 4 , C = 3 , E = 3 within the range −10 ≤ x, t ≤ 10 . Fur-
thermore, the solution of the CDG equation u16 and the solutions of Lax equation 
v21(�) , v23 and v26(�) are singular kink-shaped soliton solutions. For conciseness, 
only the solution u16 has been sketched and displayed in Fig. 2 for d = 5 , A = 2 , 
B = 0 , C = 1 , E = 1 within the limit −10 ≤ x, t ≤ 10.

The structure of the achieved solutions u31(�) , u33(�) and u38(�) characterized 
the standard bell-shaped 

(

sech2
)

 soliton and the solution u36(�) indicates anti-bell-
shaped soliton. In Fig. 3a, we have sketched the bell-shaped soliton of solution 
u33(�) for the specific values of the parameters d = −1 , A = 4 , B = 2 , C = 3 , E = 1 
within the interval −1.5 ≤ x, t ≤ 1.5 and in Fig. 3b the anti-bell-shaped soliton of 
solution u36(�) has been portrayed for d = −10 , A = 4 , B = 0 , C = 3 , E = 3 with 
range −1 ≤ x, t ≤ 1.

Fig. 5  a Shows the periodic wave of solution u34(�) and b shows periodic wave of solution v32(�)
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The solutions u18(�) , u26(�) and u28(�) of the CDG equation and the solution 
v16(�) of the Lax equation exhibit the bell-shaped solitary wave. Bell-shaped solitary 
wave solution profile of v16(�) for d = −10 , A = 2 , B = 0 , C = 1 , E = 1 is presented 
in Fig. 4 within the interval −10 ≤ x, t ≤ 10.

The solutions u17(�) , u19(�) , u22(�) , u24(�) , u27(�) and u34(�) of the CDG equa-
tion and v12(�) , v14(�) , v17(�) , v24(�) , v29(�) , v34(�) and v39(�) of the Lax equation 
projected the periodic traveling wave solutions. The graphical illustration of exact 
periodic traveling wave solutions of solution u34(�) with d = 1 , A = 2 , B = 2 , C = 3 , 
E = 2 and −10 ≤ x, t ≤ 10 is presented in Fig. 5a. Again the solutions v22(�) , v27(�) , 
v32(�) and v37(�) are also periodic traveling wave solutions. Figure  5b illustrates 
the shape of the periodic traveling wave solution of  v32(�) for d = 5 , A = 2 , B = 0 , 
C = 3 , E = 5 within the range −1 ≤ x, t ≤ 1.

6  Conclusion

In this research work, we succeeded in implementing the new generalized 
(

G�∕G
)

-expansion method to the CDG equation and the Lax equation. We successfully 
obtained wider class of closed-form solitary wave solutions with a variety of dis-
tinct physical structures, such as, soliton, singular soliton, kink, singular kink, bell-
shaped soliton, anti-bell-shaped soliton, periodic and bell type solitary wave solu-
tions which are sketched in Figs. 1,2,3,4 and 5 On comparing to our results in this 
paper with the well-known results obtained in [17, 34–47], most of the obtained 
solutions are exclusively new. The crucial privilege of this implemented method 
against other methods is that the method provides more general and huge amount 
of new wave solutions which validate the superiority of this method. Although this 
approach has several advantages, it has some limitations also. This approach has 
not yet been able to analyze the nonlocal equations, such as the nonlocal nonlinear 
Schrödinger equation, the partially nonlocal Schrödinger equation [48–50]. There-
fore, our next project is to work on this method and extend the approach of finding 
new solutions to these nonlocal nonlinear evolution equations.
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