
266 Int. J. Computer Applications in Technology, Vol. 55, No. 4, 2017

Copyright © 2017 Inderscience Enterprises Ltd.

New mathematical model for software quality
prediction of component-based software using
shuffled frog-leaping algorithm

Deepak Panwar*
Amity School of Engineering & Technology,
Amity University Rajasthan,
Jaipur 303002, India
Email: deepakpanwar03@gmail.com
*Corresponding author

Pradeep Tomar
Department of Computer Science & Engineering,
School of Information & Communication Technology,
Gautam Buddha University,
Gautam Buddha Nagar, Greater Noida 201308, India
Email: parry.tomar@gmail.com

Abstract: Customer satisfaction and profit making are the two motives that define software quality;
therefore, software industry uses new technologies like component-based software engineering, re-
engineering, etc., to make their software production more profitable. The proposed mathematical
model is executed under ISO/IEC 9126 quality assurance model and justifies the definition of
software quality given by IEEE 1061(1998). The model calculates the degree of stakeholder
satisfaction (Q) by combining the quality attributes and it is validated using Shuffled Frog-Leaping
Algorithm (SFLA) which improved the result by 2.46%.

Keywords: software quality prediction; ISO/IEC 9126; shuffled frog-leaping algorithm; component-
based software development.

Reference to this paper should be made as follows: Panwar, D. and Tomar, P. (2017) ‘New
mathematical model for software quality prediction of component-based software using shuffled
frog-leaping algorithm’, Int. J. Computer Applications in Technology, Vol. 55, No. 4, pp.266–275.

Biographical notes: Deepak Panwar is an Assistant Professor in Amity University Rajasthan,
India. He obtained his Bachelor degree and Master degree in Computer Science & Engineering
from Gautam Buddha University, India, in 2009 and 2011, respectively. His main research
interest is in the area of software quality assurance and computational intelligence.

Pradeep Tomar is an Assistant Professor in Gautam Buddha University, India. He obtained his PhD in
Computer Science & Engineering from Maharishi Dayanand University, Rohtak, Haryana, India. His
main research interest is in the area of component-based software engineering and computational
intelligence.

1 Introduction

Every organisation wants to run with profit only and it is a
common trend to acquire the new technologies, methods,
and models to enhance the quality of the software product.
Software quality is directly proportional to the value of the
product and the profit of the organisation. As specified by
Sommerville (1982), ‘software quality means the satisfaction
of the stakeholders’. Producing software using Open Source
Software (OSS) and Commercial off-the-shelf (COTS)

components is extremely helpful to increase the quality of
the software product to make it valuable for the market and
to enhance its scope.

The idea of Component-Based Development (CBD)
given by ‘Douglas McIlroy’ in a conference was about the
software crisis. But after that another researcher ‘Brad Cox’
defined the concept of software component. Firstly, IBM
used this concept in 1990s. However, these days it is very
common to produce software using components, therefore
CBD is very effective to increase the profit of the producer

 New mathematical model for software quality prediction 267

of Component-Based Software (CBS). Component-based
approach is also useful to produce complex software using
COTS.

But this study suggests some hidden objectives of the
CBD and these are:

1 OSS can also play an important role in CBD because
developers can use an OSS as a component to develop a
component-based system such as hybrid re-engineering.

2 If the developer is able to enhance the quality of a
component, then it would be an easy task for the
improvement in quality of software which uses that
component. It means when the developer uses the COTS
or OSS or both, then there should be some method of
quality assurance for the respective component.

3 Testing is difficult with COTS because the code is not
available to find the source of defects but this condition
arrives only when the developer is working with COTS.
In the case of OSS the developing team would be able
to detect the source of defect or fault because the code
is available after reverse engineering could be available
on it.

This study also presents a novel mathematical model for
software quality prediction and it is new because in past
the researchers did their research about software quality
prediction methods by taking one or two quality attributes
without any base while the proposed work has a base model
ISO/IEC 9126 with a number of quality attributes.

The remainder of the paper is organised as follows: Section
2 describes the difference between COTS and OSS but how
they work together; Section 3 includes ISO/IEC 9126 software
quality assurance model; Section 4 gives the knowledge about
existing methods for software quality measurement; Section 5
describes the basic concept of SFLA; Section 6 presents
software quality prediction problem; Section 7 is about
proposed model and modelling of software quality prediction
according to it; Section 8 represents experimental validation
and last Section 9 provides the conclusion.

2 COTS and OSS

The study of literature shows that the COTS and OSS are the
essential parts for CBD. In current scenario the software
production industry wants to generate more revenue to get
more profit leading to the evolution of technologies. CBD
plays an important role to make quality software in less time
but there are some limitations for both COTS and OSS in CBD
(Sparling, 2000):

 ‘A component is a language neutral, independently
implemented package of software services delivered in
an encapsulated and replaceable container accessed via
one or more given interface’.

 ‘A software component is a physical package of
executable software with a well-defined and published
interface’.

 ‘A Software Component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be
deployed independently and is subject to third-party
composition’.

All the definitions show a component like a closed source
and that is the main reason regarding the inappropriate
behaviour of some traditional metrics towards the CBD. For
example, Halstead Software Science (HSS) equations cannot
be applied to the CBD directly like equation (1), owing to
the improper knowledge of actual number of operators and
operands in code.

0

VFault B S (1)

where:

V = volume in terms of operator and operands.

S0 = discrimination constant.

It is a static equation and this is the main disadvantage for
software engineers. It states that ‘Fault in a program is a
function of its volume’. It also shows a dependency of a
number of faults detected directly to the volume of the
program, therefore the old method has a huge variation in
observation of the faults in software product and due to this
reason it is necessary task to make it dynamic.

The developer is also unaware about the number of lines
of code on which many traditional metrics work, although
these definitions are applicable only for COTS but not on
OSS. If a developer wants to eliminate the difficulties about
the evaluation of COTS component to make a quality
product, then there is a need to focus on the internal and
external interfaces of the component and to reduce the
testing cost developer should make it testable as pointed by
Gill and Tomar (2011). Component testing is the main
factor in CBSD because it supports the productivity and
quality. Software testing principle said that ‘Early testing
should be executed’ to reduce the cost and time of software
development. So it is necessary to make a software component
testable to achieve the quality. There is a set of program
characteristics that lead to testable software, including
operability, observability, controllability and understand-
ability. A developer can make a component testable with a
set of built-in interfaces with some features. Test interface
and test architecture model are the main features which are
used to interact with the test suite to choose the functional
test cases. These are also helpful to interact with test driver
and test report interface to provide the recorded test results.
Making a component testable is not an easy task; there are
lots of questions to design a testable component like:

 How could a developer be able to design the testable
component architecture?

 How it would be systematic?

 How does a designer design a component which would
be helpful for improving the testing ability?

268 D. Panwar and P. Tomar

As the researchers said the testable component should be
able to satisfy some parameters which are important for its
production.

As each component should be according to its requirements
it is mandatory that it should be tested in an isolated
environment. When a developer makes a test plan for the
component then it would be easy to specify the test strategy.

External interface should be well defined because the
component is the combination of two operational modes.

 Test mode

 Normal mode

In the first mode, the functions of the component are
executed with the help of test interfaces while in another it
is executed in normal mode and these modes are helpful to
setting up a test case. The drivers used in these modes are
functional test drivers, condition set-up drivers, case-
oriented test drivers and generic test drivers. These test
drivers are used to initiate the external interface. Internal
interface should also be tested because test function can be
set up dynamically and each test case should be executed
with a test record for every test run.

Use of OSS is more profitable rather than traditional
closed source software. It is more profitable for the user and
developer because:

 It is based on knowledge sharing approach.

 It is more flexible and it provides the ability for the
solution to adopt possible future changes in requirements
and to gain high flexibility with low coupling.

 Code is available for OSS so it is ready to reuse,
therefore a developer can use it to make a new product
by performing white-box testing on it before executing
the black-box testing approach, as is used for the COTS.

 Developer can reuse existing functionalities so it is
easy to use the functionality of OSS with or without
modification for new software development.

 OSS is also used to increase the productivity because
increase in performance due to availability of code.

It is impossible to be ideal for anything in this world so OSS
also has some limitations like quality of a product which is
generated with the help of OSS is totally dependent upon
code review and data testing. Sometimes this is inconvenient
for the developer due to some reasons, for example:

 Review of large projects.

 Lack of tools and methods for the development and
quality assurance.

3 ISO/IEC 9126 quality assurance model

International standard ISO/IEC 9126 was prepared by joint
technical committee ISO/IEC JTC 1 Information Technology.
It was necessary to make a framework for the evaluation of

software quality. ISO/IEC 9126 is that framework which
provides the facility to compile software with respect to
its objectivity. ISO/IEC 9126 is the combination of six
different quality attributes or characteristics with minimum
overlapping and these are as follows (ISO/IEC, 2001a,
2001b):

Reliability: It is the phenomenon to perform failure free
operation in specified time with specified conditions, so this
characteristic concerns the maturity of software, and means
the frequency of failures. It also talks about the fault
tolerance and recoverability for evaluating the software
systems capability to re-establish an acceptable level of
performance.

Usability: This characteristic gives the knowledge about
the understandability, learnability and operability of the
software system and its functions. Usability also works like
a property of a system.

Efficiency: It is totally dependent upon the behaviour
whether it is time behaviour or resource behaviour. Time
behaviour is a set of measurements which is useful for the
computer response time prediction. Response time means
the essential time given to a task to execute. It estimates the
design, transaction path of complete modules and complete
system during testing phase.

Portability: It characterises the ability of a system to
change according to the modified specifications or new
specifications. It also characterises the effort required to
install the system. If a developer needs to change a software
component then portability characterises the play and plug
aspects of the software component.

Maintainability: If quality assurance team desires to
analyse the cause of failure and the effort to change a system
then the maintainability provides these facilities. Testing and
suitability also arrive under this quality attribute.

Reusability: This newly added characteristic gives the
knowledge about the interconnections between the program
units and the measure of how well modules fit together. If
the developer desires to check the ability of software to
change according to the new system requirements then it is
good to work with this characteristic. But the most
important thing is that the ISO/IEC 9126 provides the
metrics and methods for the measurements of quality
attributes and sub-attributes.

On the other hand, ISO/IEC 9126 could not be applied
to CBD in a proper manner because CBD is totally
dependent upon reusability of code and there is no
characteristic or attribute available in this quality assurance
model for the quality assessment of a reusable component.
So firstly there should be a new characteristic to solve this
problem in ISO/IEC 9126 for CBD quality assessment while
developer is using COTS or OSS or both (ISO/IEC, 2002).
Whenever an organisation or development team of software
system wishes to use this software quality framework for
the development of software system using CBD techniques
then the use of reusability characteristic would be
compulsory for the software development. This study
suggests the new characteristic reusability with its sub-
attribute for the quality assessment of CBS.

 New mathematical model for software quality prediction 269

4 Software quality prediction methods

Software development market has many existing models
for OSS quality assurance but all of them are bound and
limited to some extent, which means all the present quality
assurance methods are capable to predict one, two or
three quality attributes using HSS, fuzzy optimisation,
neuro-fuzzy optimisation technique, etc. (Wu, 2011).
Whenever a developer uses the HSS then the maximum
number of faults can be detected in early phase of software
development life cycle (SDLC) as pointed by Panwar and
Tomar (2011) the software development team checked the
impact of change in requirements, design and code.
According to Table 1, the factors which have any type of
effect on quality attribute, whether in a positive way or in a
negative, should be calculated. The factors which have
adverse effect are taken as numerator and the factors which
affect positively are taken as denominator. And after that
the quality assurance team calculates the variables for
reusability and reliability shown in equation (2).

0

*RE REU

V
B S S

S

 (2)

This equation is helpful to detect the number of faults in
early phases of SDLC using OSS. According to HSS the
volume of OSS component can be detected and in case of
any change in customer requirements it is necessary to
calculate the volume and faults again.

It is a simple method which could be applicable on
simple programs manually. Next method is prediction of
software quality using fuzzy logic (Singh et al., 2007) pointed
that the maintenance affects the cost of software; this study
was based on the analysis of major factors that can affect the
maintenance and the factors were documented document
quality, understandability, cyclomatic complexity, etc., as
shown in Figure 1. Quality assurance used a fuzzy model for
the prediction of software maintenance. The given model
states that the fuzzy logic is a fascinating area of research
because it does a great job of trade-off between precision and
significance. According to this fuzzy model developer uses
the maintenance factors to predict the quality of OSS by a
trained fuzzy system because fuzzy set theory has a good
accuracy rate for software quality assessment (Michalmay,
2005). The related work on various aspects of software
engineering can be consulted from Yi et al. (2016), Gupta et al.
(2015a), Srivastava et al. (2015), and Gupta et al. (2015b).

The existing model considers the inputs and outputs of
maintainability as in rule base and then fuzzes the input
data. Fuzzification integrates all the inputs and converts
them into a single output and all these done according to the
rule base (Aggarwal and Singh, 2008).

The inputs and outputs are classified using trimf
membership function. This method is also applied to the other
quality attributes like reusability, etc., but it works with some
limitations like – it works for single quality attribute (Baisoh
and Liedtke, 1997).

Table 1 Impact on software quality attributes

S. no.

Factors for
analysing

quality
attributes

Effect

Impacts on
reusability

with change in
different phases

Impacts on
reliability

with change
in different

phases

1. Requirement
Change ▲ ▲

No change ▼ ▼

2. Design
Change ▲ ▲

No change ▼ ▼

3. Code
change ▲ ▼

No change ▼ Constant

4.
Component
complexity

Increase ▼ ▼

Decrease ▲ ▲

5.
Software
complexity

Increase ▼ ▼

Decrease ▲ ▲

Figure 1 Factors that can affect the maintenance

5 Shuffled frog leaping (SFL)

It is a meta-heuristic technique and it has been developed for
solving combinatorial optimisation problems. It is used
in proposed work to achieve higher degree of customer
satisfaction (Quality Software). But before the discussion on
proposed work there is a need to understand what the SFL is.
As pointed out by Eusuff et al. (2006), SFL is based on
the behaviour of random numbers of frogs which means
on a random population of frogs. In this technique the
behaviour is observed, imitated and modelled and then the
population is partitioned into memeplexes (Otte et al., 2008).
SFL is already a successful technique for various optimisation
problems such as water resource optimisation, travelling
salesman problem, etc. It is the combination of the benefits
of Genetic Algorithm and Particle Swarm Optimisation
(Rajpurohit et al., 2016).

270 D. Panwar and P. Tomar

SFL has various steps as shown in Figure 2. In SFL
algorithm a random number of frogs or a population (P) is
defined and then divided into subset called memeplexes.
Each frog performs local search and can be influenced by
the other frog to evolve within the memeplex and this
evolution is called memetic evolution. SFL can be described
as after a particular number of evolution steps all the subsets
are forced to mix together and new subsets are formed
through a shuffling process. To satisfy the convergence
criteria the process of local search and shuffling remains in
continuity (Gill and Grover, 2003).

The various steps are as follows:

1 It involves a random population of frogs (P) which is
made by a group of effective frogs.

2 P is defined according to the value of their fitness and
then it is divided into (m) memeplexes.

3 Frog i is expressed as 1 2, , ,i i i ikx x x x , where k

means the number of variables.

4 Best fitness valued frog is identified by Xb and the frog
which has the worst fitness value is identified by Xw
within a memeplex.

5 And the global best fitness value is defined by Xg.

6 Following equations are used to improve the worst fitness
valued frog, as shown in Figure 3 (Eusuff et al., 2006).

 i b wD r X X (3)

 new w old w i max i maxX X D D D D (4)

where:

Di = Change in frog position

Dmax = maximum change in frog position

If this method gives a better solution in comparison to worst
frog then it replaces the worst frog otherwise equations (3)
and (4) are repeated to global fitness value Xg and when
there is no further improvement with this case then Xw will
be produced randomly (Gill and Grover, 2004).

Figure 2 Shuffled frog-leaping algorithm process

Initialise parameters: Population Size
(FS) and no. of memeplexes (m) and no.

of iterations in each memeplexes

Generate random population of FS
solutions (frogs), Calculate fitness of

each individual frog

Sorting population in descending
order based upon their fitness values

Divide FS solutions into m
memeplexes

Perform Local Search

Shuffle evolved memeplexes

Determine the best solution

Is termination
criteria achieved?

Yes

No

k =k+1

i =0

k = 0

i = i + 1

Determine Xw and Xb for kth
memeplex and Xg

Evaluate worst frog position using
equations (3) and (4)

Replace Xb with Xg and evaluate
worst frog position using equations

(3) and (4)

If the new frog
position is better than the

worst position

If the new frog
position is better than the

worst position

Generate the new frog randomly

Replace the worst frog with new frog

If fixed i no. of
iteration reached

If fixed k no. of
memeplexes reached

Yes

Yes

No

No

Yes

Yes

No

No

 New mathematical model for software quality prediction 271

Figure 3 Shuffled frog leaping

6 Defining software quality prediction problem

Software quality prediction is a measure of the fulfilment
criteria of customer requirements in the form of different
quality attributes. Measurement of attributes is dependent on
some basic characteristics like metric name which is useful to
match the metric with its exact value, characteristics like
purpose of the metric (ISO/IEC, 2001b), method of application,
measurement formula and most important interpretation of the
measured value of that particular matric. But the software
quality means is to meet some performance goal according to
the customer requirements. Researchers define the degree of
customer satisfaction in the form of a variable Q (Raghunathan
et al., 2005).

Degree of customer satisfaction measures how well the
customer expectations are met to the actual output of a product
or a service provided by the software development organisation
to the customer. Fulfilment of expectations is totally dependent
upon quality attributes and it signifies that the quality attributes
should be optimised with respect to the customer requirement
specifications, for example when the value of functional
compliance is near to 1 then it is good, so if the researcher
works to get quality software then this attribute should be
near to 1. If the value of accuracy expectation falls then it is
good. Case with knapsack problem, the priority given to the
quality attribute according to the customer requirements
represents its weight and a random number of items numbered
from 1 to n each with a weight Wij as shown in equation (6).
The 0/1 knapsack problem comes under NP-complete problem
and in this paper SFLA is used for solving this hard
combinatorial optimisation problem of software quality
prediction. When M number of quality attributes according
to any software quality assurance model then researchers
compare these attributes with 0/1 knapsack problem as shown
in Table 2.

Table 2 Relationship between knapsack and software quality
prediction problem

Item no. 0/1 knapsack problem Software quality attributes

 Price Weight Priority Value of attribute

1. 5 3 kg 0.10 0.79325

2. 25 2 kg 0.17 0.9325

3. 10 7 kg 0.19 0.01234

4. 3 10 kg 0.13 0.11223

7 Proposed mathematical model

In this section of paper the proposed mathematical model is
discussed for the assessment of software quality for CBS.
Software quality means the degree of stakeholder’s
satisfaction. It consists of many quality attributes defined by
researchers through different quality assurance models like
as McCall quality model, ISO/IEC 9126, etc. Proposed
work has its dependency on ISO/IEC 9126 quality assurance
model. It consists of six main attributes as already
mentioned in Section.3. But ISO/IEC 9126 does not make
any transparency in case of reusability attribute and its sub-
attributes. When developer wants to go for the quality
prediction for CBD then it is necessary to consider the
reusability factor. So the proposed mathematical model has
its dependency on seven qualities for quality prediction of
CBS. In proposed model researcher defined Q as a quality
degree measure in customer satisfaction.

1 1

j mi n

ij ij
i j

Q K W

 (5)

where:

Q = quality measure degree in customer satisfaction

Kij = RiSj

Ri = priority given to the main attributes

Sj = priority given to the sub-attribute

{Before applying SFL the normalisation for Sj is 0.1 and
scale of Sj is between (0 – 1)}

Wij = calculated value of quality attributes according to
formulas defined in ISO/IEC 9126.

After taking equation number for modified ISO/IEC 9126,
we get:

57

1 1

ji

ij
i j

Q K W

 (6)

1 11 2 12 3 13 4 14 5 5

2 1 21 2 22 3 23 4 24 5 25

7 1 71 1 72

1 73 1 74 1 75

] Q R S W S W S W S W S W

R S W S W S W S W S W

R S W S W

S W S W S W

 (7)

272 D. Panwar and P. Tomar

Some attributes have five sub-attributes but some have less
than five so in that case, value of extra sub-attribute should
be equal to zero. So it does not have any effect on Q.

8 Modelling software quality prediction using
mathematical model with SFLA

1 The SFLA is dependent upon the fitness value of frogs.

2 The shuffling process is carried out with the change in
position of frog and it depends upon the worst valued
and best valued frog within a memeplex.

3 Normalisation of quality attributes brings them on a
common platform and means it is the equally distributed
priority value to the quality sub-attributes.

4 But as the change in positions of frog. We got the new
positions. Researchers also get the new priority value
for sub-attributes which are behaving like memeplexes.

8.1 Example validation

This study used a management system with the name ‘E-out-
pass Management’ made by the faculty of Computer Science
and Engineering of Amity University Rajasthan. This system
derives many of its features from the modern – email system.
This given system is easy to use and makes the process of
obtaining the out-pass/gate pass in a synchronised way. This
project contains five modules, i.e. administration, student,
mentor, warden and security. The admin has the sole right to
provide rights to each genre. The project’s aim is to improve
the process of generating out-pass in a secure manner at school,
colleges and various private institutions. The knowledge about
the requirements of this project is very necessary to discuss
because the prioritisation values are depending upon them.

Core system functionalities are:

 Admin should be able to register for faculty and warden.

 Student can register for himself.

 Student registers for the out-pass and request is sent to
mentor.

 The mentor can accept or deny the request. If accepted,
the request is forwarded to the warden. Email is sent to
student and warden regarding the out-pass status.

 The warden can accept or deny the request. If accepted,
the student can generate his out-pass. Email is sent to
student and warden regarding the out-pass status.

Some important and fundamental requirements are as follows
with respect to different modules.

Admin module

 Admin should be able to register for faculty and warden.

 Admin should be able to add hostel number, wing,
room number, etc.

Student module

 Student should be able to register himself.

 Student should be able to register for out-pass and
request should be sent to his mentor.

 Student should be able to generate his out-pass in pdf
form or in printable form his request gets accepted.

Mentor module

 Mentor should be able to update student information.

 Mentor should be able to accept the student out-pass
request.

 If mentor accepts student request, the request is
forwarded to the warden.

 If mentor denies the student request, the request is deleted.

 Student out-pass status mail is sent to both warden and
student after mentor accepts or denies the out-pass
request.

Warden module

 Warden should be able to accept the student out-pass
request forwarded by mentor.

 If warden accepts student request, the student is able to
generate out-pass, but if warden denies student request,
the request is deleted.

 Student out-pass status mail is sent to both mentor and
student after warden accepts or denies the out-pass
request.

These are the basic requirements of project for the validation
of our mathematical model using SFL. It is important to
describe the basic requirements because calculated values of
quality attributes and sub-attributes are totally dependent
upon the customer requirements.

The values of quality attributes and sub-attributes are
calculated with the help of metrics defined in ISO/IEC
9126. Calculation is dependent upon particular metric scale
type, size types and count types. Calculated values are
shown in Table 3.

The ordering of quality attributes is totally dependent upon
the customer requirements. So the priority of seven different
attributes are according to the requirements of project ‘E-out-
pass Management’ as also been discussed in previous section.

 New mathematical model for software quality prediction 273

Table 3 Software quality attributes primary values, values after using mathematical model and values after applying SFL

S. no.

Quality
attributes
according

ISO/IEC-9126

Sub-attributes
Measured

value

Priority value
for quality
attributes

according to
the customer

Normalisation
coefficient

before applying
SFL

Scaled value
of

sub-attributes

Normalisation
coefficient

after applying
SFL

Improved
scaled
value

1. Reliability

Maturity 0.771506

0.9

0.1 0.0694355 0.199 0.1381760

Fault tolerance 0.948212 0.1 0.0853391 0.195 0.1664112

Recoverability 0.123634 0.1 0.0111271 0.181 0.0201399

Reliability
compliance

0.296782 0.1 0.0267104 0.184 0.0491471

2. Reusability

Correctness 0.518987

0.3

0.1 0.0155696 0.106 0.0165037

Extensibility 0.277653 0.1 0.0083296 0.103 0.0085794

Reusability
compliance

0.923701 0.1 0.0277110 0.101 0.0280884

3. Maintainability

Analysability 0.782193

0.6

0.1 0.0469316 0.159 0.0746212

Changeability 0.895292 0.1 0.0537175 0.121 0.0649982

Stability 0.373293 0.1 0.0223976 0.155 0.0347162

Testability 0.221397 0.1 0.0132838 0.170 0.0225824

Maintainability
compliance

0.384490 0.1 0.0230694 0.113 0.0260684

4. Functionality

Suitability 0.486380

0.7

0.1 0.0340466 0.124 0.0422177

Accuracy 0.756264 0.1 0.0529385 0.151 0.0799371

Interoperability 0.598944 0.1 0.0419261 0.179 0.0750476

Security 0.193677 0.1 0.0135574 0.175 0.0237254

Functionality
compliance

0.075170 0.1 0.0052619 0.148 0.0077876

5. Usability

Understandability 0.602931

0.4

0.1 0.0241172 0.166 0.0400346

Learnability 0.545237 0.1 0.0218095 0.163 0.0355494

Operability 0.096077 0.1 0.0038431 0.143 0.0054956

Attractiveness 0.953120 0.1 0.0381248 0.111 0.0423185

Usability
compliance

0.948011 0.1 0.0379204 0.108 0.0409540

6. Portability

Adaptability 0.601954

0.5

0.1 0.0300977 0.135 0.0406319

Insatiability 0.110660 0.1 0.0055330 0.132 0.0073035

Coexistence 0.812503 0.1 0.0406252 0.130 0.0528127

Replaceability 0.726915 0.1 0.0363458 0.127 0.0461591

Portability
compliance

0.832286 0.1 0.0416143 0.116 0.0482725

7. Efficiency

Time behaviour 0.149923

0.8

0.1 0.0119938 0.194 0.023268

Resource
utilisation

0.224257 0.1 0.0179406 0.190 0.0340870

Efficiency
compliance

0.726557 0.1 0.0581246 0.187 0.1086929

The quality attributes which have the highest impact upon the
quality (requirements) are present with highest priority as
shown in Table 3. After that when researcher used SFLA for
the optimisation then it is necessary to use normalisation
coefficient first to bring all the attributes at a common platform.

Software prediction problem is an NP-complete problem
like 0/1 knapsack and SFL technique is an optimisation
algorithm for the solution of combinatorial problem so the
researcher used it to get the best solution with the help of

given mathematical model. When the values of quality
attributes are available then researcher applied the
mathematical model as shown in equation (6) to get the
value of Q called Qold with a common normalised value, i.e.
0.1. It is an initial value in terms of degree of customer
satisfaction. But after applying the SFL researcher got the
improved value for Q means more customer satisfaction.
Using equations (3) and (4) SFL has been applied to change
the position of the sub-attributes (frogs) with the help of

274 D. Panwar and P. Tomar

improved normalisation coefficient (priority) because all
the attributes and sub-attributes are behaving like the
memeplexes and sub-memeplexes as shown in Figure 2.
Applying SFL we got a new value for Q, i.e. Qnew, and after
the comparison of Qold and Qnew we got a better result in
terms of degree of customer satisfaction which is improved by
2.46% as shown in Figures 4, 5 and 6. So it is good to use to
optimise the result using computational intelligence for the
proposed mathematical model of software quality prediction.

9 Discussion

This paper presents a new mathematical model for software
quality prediction of CBS by introducing a new term: the
degree of customer satisfaction as a unit of software quality.
Software quality prediction problem is a combinatorial
problem which acts like an NP-complete problem. So it

becomes necessary to use an appropriate stochastic
algorithm to solve this type of problem. SFL played a
significant role to find an optimal solution for this type of
combinatorial problem because software quality attributes
and sub-attributes work like the elements of memeplexes
and sub-memeplexes defined in SFLA. So the proposed
mathematical model in this study acts like an initial
important step to predict the software quality. Researcher
taken the quality attributes with a neutral impact on each
other as shown in proposed mathematical model validation
results using SFLA like the iterations increase the degree of
customer satisfaction achieve the convergence in a positive
manner; however, it is also possible that a particular
attribute with increasing value may affect the other
subsequent attribute in an adverse or in a constructive
manner. In future the researchers could choose other meta-
heuristic approach through which the proposed model could
be better for quality prediction of software.

Figure 4 Comparisons of software quality attributes after and before applying SFL

Figure 5 Comparisons of software quality attributes after and before applying SFL

 New mathematical model for software quality prediction 275

Figure 6 Comparisons of software quality attributes after and before applying SFL

References

Aggarwal, K.K. and Singh, Y. (2008) Software Engineering:
Program, Documentation and Operating Procedure, 3rd ed.,
New Age International Publication, New Delhi.

Baisoh, E. and Liedtke, T. (1997) ‘Comparison of conventional
approaches and soft-computing approaches for software
quality prediction’, Proceedings of the 1997 IEEE
International Conference on Systems, Man, and Cybernetics,
IEEE, Piscataway, NJ, pp.1045–1049.

Eusuff, M., Lansey, K. and Pasha, F. (2006) ‘Shuffled frog-leaping
algorithm: a memetic meta-heuristic for discrete optimization’,
Engineering Optimization, Vol. 38, No. 2, pp.129–154.

Gill, N.S. and Grover, P.S. (2003) ‘Component-based measurement:
few useful guidelines’, ACM SIGSOFT Software Engineering
Notes, Vol. 28, pp.1–4.

Gill, N.S. and Grover, P. (2004) ‘Few important considerations for
driving interface complexity metric for component-based
development’, ACM SIGSOFT Software Engineering Notes,
Vol. 29, pp.1–4.

Gill, N.S. and Tomar, P. (2011) ‘New & innovative process to
construct testable component with systematic approach’,
ACM SIGSOFT Software Engineering Notes, Vol. 36, pp.1–4.

Gupta, V., Chauhan, D.S. and Dutta, K. (2015a) ‘Hybrid regression
testing technique: based on requirement priorities, faults &
modification history’, International Journal of Computer
Applications in Technology, Vol. 51, No. 4, pp.352–365.

Gupta, C., Srivastav, M. and Gupta, V. (2015b) ‘Software change
impact analysis: an approach to different type of change to
minimize regression test selection’, International Journal of
Computer Applications in Technology, Vol. 51, No. 4,
pp.366–375.

ISO/IEC (2001a) ISO/IEC 9126-1 Software Engineering-Product
Quality-Part-1: Quality Model, International Organization for
Standardization, Geneva.

ISO/IEC (2001b) ISO/IEC 9126-2 Software Engineering-Product
Quality-Part-2: External Metrics, International Organization
for Standardization, Geneva.

ISO/IEC (2002) ISO/IEC 9126-1 Software Engineering-Product
Quality-Part-3: Internal Metrics, International Organization
for Standardization, Geneva.

Michalmay, M. (2005) ‘Quality practices and problems in free
software projects’, Proceedings of the First International
Conference on Open Source System, Genoa, Italy, pp.24–28.

Otte, T., Moreton, R. and Knoell, H.D. (2008) ‘Applied quality
assurance methods under the open source development model’,
32nd Annual IEEE International Computer Software and
Applications, 2008. COMPSAC ‘08, IEEE, Turku, Finland.

Panwar, D. and Tomar, P. (2011) ‘New method to find the maximum
number of faults by analysing reliability and reusability in
component-based software’, 2011 3rd International Conference
on Trendz in Information Sciences and Computing (TISC), IEEE,
Chennai, India, pp.164–168.

Raghunathan, S., Prasad, A., Mishra, B.K. and Chang, H. (2005)
‘Open source versus closed source: software quality in
monopoly and competitive markets’, IEEE Transactions on
Systems, Man and Cybernetics: Part A: System and Humans,
Vol. 35, No. 6, pp.903–918.

Rajpurohit, J., Sharma, T.K. and Nagar, A.K. (2016) ‘Shuffled frog
leaping algorithm with adaptive exploration’, Proceedings of
Fifth International Conference on Soft Computing for Problem
Solving Volume 436 of the Series Advances in Intelligent
Systems and Computing, Springer, Singapore, pp.595–603.

Singh, Y., Kumar, P. and Sangwan, O.P. (2007) ‘A review of studies
on machine learning techniques’, International Journal of
Computer Science and Security, Vol. 1, pp.70–84.

Sommerville, I. (1982) Software Engineering, 6th ed., Addison-Wesly,
Harlow, England.

Sparling, M. (2000) ‘Lessons learned through six years of component-
based development’, Communication of the ACM, Vol. 43,
pp.47–53.

Srivastava, P.R., Pradyot, K., Sharma, D. and Gouthami, K.P. (2015)
‘Favourable test sequence generation in state-based testing using
bat algorithm’, International Journal of Computer Applications
in Technology, Vol. 51, No. 4, pp.334–343.

Wu, B.H. (2011) ‘An evolutionary approach to evaluate the quality of
software system’, Fourth International Workshop on Advanced
Computation Intelligence, IEEE, Wuhan, China.

Yi, W., Li, X. and Pan, B. (2016) ‘Solving flexible job scheduling
using effective memetic algorithm’, International Journal
of Computer Applications in Technology, Vol. 53, No. 2,
pp.157–163.

