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Abstract
Cervical and ovarian cancers contribute significantly to female morbidity and mortality worldwide. The current standard 
of treatment, including surgical removal, radiation therapy, and chemotherapy, offers poor outcomes. There are many side 
effects to traditional chemotherapeutic agents and treatment-resistant types, and often the immune response is depressed. As 
a result, traditional approaches have evolved to include new alternative remedies, such as natural compounds. Aquatic species 
provide a rich supply of possible drugs. The potential anti-cancer peptides are less toxic to normal cells and can attenuate 
multiple drug resistance by providing an efficacious treatment approach. The physiological effects of marine peptides are 
described in this review focusing on various pathways, such as apoptosis, microtubule balance disturbances, suppression of 
angiogenesis, cell migration/invasion, and cell viability. The review also highlights the potential role of marine peptides as 
safe and efficacious therapeutic agent for the treatment of cervical and ovarian cancers.
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PACAP	� Pituitary adenylate cyclase-activating 
polypeptide

PAR2	� Protease-activated receptors 2
P-gp	� P-glycoprotein
PI3K	� Phosphatidylinositol 3-kinase
ROS	� Reactive oxygen species
VEGF	� Vascular endothelial growth factor
VGSC	� Voltage-gated sodium channels

Introduction

Endometrial, cervical, ovarian, vulvar, and vaginal cancers 
are examples of gynecologic cancers of the female reproduc-
tive system. Over 1 million new patients were diagnosed 
in 2018, and over 580,000 people died as a result of endo-
metrial, cervical, and ovarian malignancies [1]. Cervical 
cancer (CeCa), which develops from cervical cells, is the 
most significant cause of death in females. Patients suffering 
from severe or recurring CeCa have poor prognosis, with 
just a 10–20% likelihood of survival after one year [2, 3]. 
Surgery, radiation, and chemotherapy are the most common 
therapies for CeCa. Cisplatin, paclitaxel, topotecan, ifos-
famide, 5-fluorouracil, docetaxel, mitomycin, epirubicin, 
and carboplatin are the most often used medications to treat 
CeCa. However, these treatments have commonly adverse 
effects and complications. Surgery may result in bleeding, 
organ damage, and the possibility of clots in the deep veins 
of the legs; radiotherapy may result in menopause, infertil-
ity, discomfort, or pain during intercourse. Chemotherapy's 
adverse effects and drug resistance is another problem [4, 5].

Ovarian cancer (OvCa) is the third most frequent gyneco-
logic cancer, worst gynecological cancer, following breast 
and cervix cancers. Early detection and diagnosis are dif-
ficult as symptoms are often mistaken for other nonmalig-
nant diseases. The disease is linked to a poor diagnosis and 
may expand to the upper abdomen, lymphatic veins, and 
brain. As a reason, early detection and efficient treatment are 
crucial for increasing survival [6, 7]. OvCa's current stand-
ard of care is a blend of optimal cytoreductive or debulk-
ing surgery, radiation, and platinum-based chemotherapies 
(typically cisplatin or carboplatin) plus paclitaxel. Despite 
this treatment, up to 70% of patients relapse, with a 12- to 
18-month median progression-free survival. Sensitivity to 
platinum-based chemotherapies declines with each con-
secutive relapse as platinum-resistant and refractory illness 
develops. Furthermore, the side effects of chemotherapy 
regimens often lead to neurotoxicity, nephrotoxicity, arthral-
gia, and fatigue, with a detrimental impact on the quality 
of life. As a result, long-term survival remains poor, with 
a significant risk of recurrence and side effects [8]. Even 
though each cancer has its unique treatment guidelines, 
the most common treatments include surgery, radiation, 

and chemotherapy. Current therapies, notably anti-cancer 
medications, frequently result in a plethora of adverse side 
effects, toxicity, and multidrug resistance (MDR). Natural 
products have been researched as adjunctive or alternative 
treatments to enhance clinical outcomes, lessen side effects 
and toxicity, overcome MDR, and increase survival rates 
due to the significant toxicity compared with conventional 
anti-cancer medicines [9, 10].

The marine environment contains a wealth of bioactive 
compounds that could treat human disorders such as can-
cer. Hundreds of new sea-based natural products have been 
extracted from marine micro- and macro-organisms, such 
as bacteria, fungi, micro-and macro-algae, corals, sponges, 
tunicates, and mollusks [11–13]. Marine-based medica-
tions have begun to impact modern pharmacology, with 
several anti-cancer therapies derived from marine chemi-
cals receiving clinical approval, including cytarabine, belan-
tamab mafodotin, brentuximab vedotin, enfortumab vedotin, 
eribulin mesylate, fludarabine phosphate (prodrug of ara-A), 
lurbinectedin, nelarabine (prodrug of ara-G), trabectedin, 
polatuzumab vedotin, plitidepsin, and vidarabine [14, 15].

There are numerous reasons why marine peptides have 
sparked interest in the development of anti-cancer therapies. 
They have several advantages over proteins or antibodies, 
including their small size, simple manufacturing, cell mem-
brane-crossing properties, low drug–drug interaction, pre-
cise targeting, chemical and biological versatility, and lesser 
adverse effects due to lack of kidney or liver deposition. 
Anti-cancer peptides have a short half-life, short-bioavaila-
bility, flawed-pharmacokinetics, and protease sensitivity, as 
drawbacks [16, 17]. Peptides are classified based on apopto-
sis induction, cell proliferation, migration and angiogenesis 
inhibition, antioxidative mechanisms, microtubule-destabi-
lization, cytotoxicity, or unidentified pathways in different 
cancerous cell lines, referring to clinical studies for cancer 
care assessment [18, 19].

Marine anti-cancer peptides have been isolated from 
cyanobacteria, sponges, mollusks, ascidians, algae, fungi, 
bacteria (actinomycete and streptomyces) and protein hydro-
lysates from fish, clam, and coral. Marine peptides can be 
categorized as linear and cyclic peptides. Linear peptides are 
formed by a straight amino acid chain connected with amide 
bonds [14]. Dolastatins and hemiasterlins (tripeptides) 
[20–22], symplostatin (pentapeptide) [23], reniochalistatins 
E (octapeptide) [24] and AGAPGG, AERQ, RDTQ (oligo-
peptide) [25] have been derived from sponges, cyanobac-
teria, mollusks, and corals. Cyclic hexa, hepta, dodecapep-
tides, and depsipeptides from marine organisms have been 
purported to have anti- CeCa and OvCa effects [26]. Cyclic 
depsipeptides have a more complicated structure, with ester 
bond substitutes and amide bonds in the peptide framework 
[14]. Apratoxin A and E [27], aurilide A [28], cryptophycin 
[29], grassypeptolide A-E [30, 31], kempopeptins A-B [32], 
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kohamamide A-C [33], neamphamide B-D [34], palauamide 
[35], palmyramide A [36], and pitipeptolides A-B [37] have 
been derived from cyanobacteria. Geodiamolide A and G 
[38] and homophymine A-E [39] from sponge and  majuscu-
lamide C [40] from mollusk are cyclic depsipeptides having 
anti- cancer effects. Furthermore, veraguamide A-G, (cyclic 
hexadepsipeptide) [41], rolloamide A [42] and trunkamide A 
(cyclic heptapeptides) [18, 43], laxaphycin B (cyclic dode-
capeptide) [44], and urukthapelstatin A (cyclic thiopeptide) 
[45] have been isolated from ascidia, actinobacteria, cyano-
bacteria, and sponge. Lipopeptides are linear or cyclic lipid 
acylated peptides, typically with the fatty acid side chain 
[14]. Hectochlorin [46] and Hermitamides A and B [47] have 
been derived from cyanobacteria, and iturins from marine-
derived bacteria [48] have been reported as anti-CeCa and 
anti-OvCa agents. Marine protein hydrolysates represent a 
category of nutraceuticals that may prevent cancer. Protein 
hydrolysates have been characterized as oligopeptides and 
free amino acids’ complex mixtures with antioxidant, anti-
proliferative, antihypertensive, and antimicrobial effects [49, 
50]. Protein hydrolysates have been obtained from fish [51], 
clam [52], and corals [25] possess anti-CeCa properties.

Marine anti-cancer peptides exert their effects by several 
cellular and molecular pathways, such as DNA defense, 
cell-cycle control, apoptosis initiation, angiogenesis 

suppression, migration, invasion, and metastasis inhibi-
tion [53–56]. To date, a limited number of studies, based 
on the biological assessment of marine peptides against 
CeCa and OvCa, have been carried out. The current topic 
reveals the importance of marine peptides as an essential 
asset for discovering novel anti-cancer treatments.

Mechanistic insights

Several dysregulated pathways are behind the pathogen-
esis of cancers [57], including CeCa and OvCa. Prevailing 
reports reveal the critical role of apoptosis, mitosis, metas-
tasis, mitochondria dysfunction, angiogenesis, and miscel-
laneous mechanisms in the progression of CeCa and OvCa. 
Apoptosis mediators have shown a potential regulatory 
effects on mitotic/metastatic pathways [58, 59]. Besides, 
mitochondrial dysfunction, in turn, orchestrate the apop-
totic pathways and aforementioned interconnected ways. 
Consequently, angiogenesis is located in the downstream 
of anti-apoptotic mediators and mitochondria-associated 
dysregulation during CeCa and OvCa [60]. So, highlight-
ing the major signaling pathways and mechanisms will 
help to introduce pivotal therapeutic targets modulated by 
marine peptides (Figs. 1, 2).

Fig. 1   Sources, biological activities, and health benefits of marine peptides
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Apoptosis

Cytochrome-c (cyt c) discharge is a pivotal stage in apop-
tosis induction, culminating in caspases (casps) activa-
tion and subsequent cell death [61]. Casps are the primary 
executors of apoptosis and are activated following pro-
teolytic cleavage. Initiator casps, including casps-8, -9, 
and -10, trigger downstream influencer casps-3, -6, and 
-7, and activate and mediate a regulated and programmed 
cell death cascade [62].

Cryptophycin has been shown to induce apoptosis via 
casps-3 activation in a human ovarian carcinoma SKOV3 
cell line [63]. Mere15 has been shown to induce apopto-
sis by initiating cyt c discharge, enhancing casps-3 and 9 
activity in HeLa cells [64]. Similarly, C-phycocyanin from 
Spirulina platensis has been shown to trigger cyt c release 
and increase the activities of casps-2, -3, -4, -6, -8, -9, and 
-10 in HeLa cells with IC50 of 80 μg mL−1 [65]. Pardaxin 
and FW523-3 have shown analogous effects with IC50s of 
15 and 0.45 μg mL−1 [66–68].

Inhibiting Bcl2 or inducing BAX has been shown a viable 
method for initiating apoptosis [69]. Symplostatin 1 initiates 
the Bcl2 phosphorylation and increases casps-3 in OvCa 
(SKOV3) cells [23]. In cervical HeLa cancer cells treated 
with Mere15, Bcl2 levels have been shown to decrease, 
reflecting a rise in the production of BAX, an effect that 
could be actuated by p53 [64]. BCP-A and FIMGPY are pro-
tein hydrolysates from clams and skates capable of inducing 
apoptosis in HeLa cells by upregulating casps-3 and BAX 
and reducing Bcl2 [51, 52]. A recent study by Abdullah 
et al. also showed the potential of MalforminA1, a cyclic 
pentapeptide derived from marine fungi, to sensitize chem-
oresistant ovarian cancer cells in cisplatin-induced apop-
tosis through Bcl2/p53 downregulation [70]. Additionally, 
gliotoxin, a non-ribosomal peptide secondary metabolite 
isolated from marine fungus Aspergillus sp, was previously 
shown to induce apoptosis in HeLa cells, the human CeCa 
cell line through activation of casps-3, -8 and -9, upreg-
ulation of BAX and cyt c release, and downregulation of 
Bcl2 [71]. More recently, Park et al. reported that gliotoxin 

Fig. 2   The signaling mediators/pathways targeted by marine peptides 
in combating cervical and ovarian cancer. Akt protein kinase B, Bax 
Bcl2-associated X protein, Bcl2 anti-apoptotic factor, BDNF brain-
derived neurotrophic factor, CREB cAMP-response element-binding 
protein, ERK extracellular signal-regulated kinase, GSK-3β glycogen 

synthase kinase-3β, MAPK mitogen-activated protein kinase, MMP 
matrix metalloproteinase, mTOR mammalian target of rapamycin, 
PI3K phosphoinositide 3-kinase, VEGF vascular endothelial growth 
factor, VGSC  voltage-gated sodium channels, ROS reactive oxygen 
species
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enhances autophagic cell death in paclitaxel-resistant ovar-
ian cancer cells by apoptosis modulation [72]. By inducing 
apoptotic mediators (e.g., casps and BAX), LvHemB1, a 
novel cationic antimicrobial peptide derived from hemocya-
nin of Litopenaeus vannamei (whiteleg shrimp), inhibited 
proliferation of CeCa cells (HeLa) [73].

Mitogen-activated protein kinases (MAPK), such as p38 
and Jun N-terminal kinases (JNK), play essential roles in 
cellular signaling that governs responses to cellular stress. 
Stimulation of the p38 MAPK and JNK pathway has been 
to release cyt c and as a result activate casps cascades. 
Activation of JNK and ERK has been shown to promote 
mitochondrial-related apoptosis via JNK signaling and S 
phase arrest secondary to ERK signaling [74]. Aplidine, 
derived from Aplidium albicans, has been shown to promote 
apoptosis in cervical HeLa cells. Aplidine has been shown 
to elicit oxidative stress, which in turn activated JNK and 
p38 MAPK and with ensuing casps-9 and -3 activation and 
apoptosis [75]. By activating ERK, bisebromoamide from 
Lyngbya majuscula has been shown to cause apoptosis in 
cervical cancer HeLa S3 and ovarian OVCAR3, OVCAR4, 
OVCAR5, OVCAR8, and SKOV3 cells [76]. FW523-3, a 
lipopeptide derived from the Micromonospora chalcea, has 
been shown to cause apoptosis in HeLa human cervix can-
cer cells by activating casps-3,-7,-9, JNK, p38 MAPK, and 
ERK [68].

Phosphatidylinositol 3-kinase/protein kinase B (PI3K/
AKT) is involved in synchronizing apoptosis in gynecologi-
cal cancers [77, 78]. Clusterin (CLU), a protein that inhibits 
apoptosis, is overexpressed in CeCa and promotes tumori-
genesis and resistance to cisplatin, doxorubicin, etoposide, 
and camptothecin, as well as activating AKT. AKT inhibi-
tion decreases the levels of phosphorylated BAD, BAX, and 
BAK, triggers cyt c release, activates casps-9, and regulates 
p53-dependent apoptosis, and concurrently decreases cyclic 
AMP response element-binding protein (CREB), glycogen 
synthase kinase-3 (GSK-3), and Raf for tumor progression 
inhibition [79, 80]. Pituitary adenylate cyclase-activating 
polypeptide (PACAP) has been  isolated from European 
green frog (Rana ridibunda), salmon (Oncorhynchus nerka), 
cod (Gadus morhua), trout (Oncorhynchus mykiss), stingray 
(Dasyatis akajei), and bowfin (Amia calva) [81]. PACAP 
has been shown to decrease cervical HeLa and HT-3 cell 
growth and to induce apoptosis by inhibiting CLU produc-
tion and secretion, inhibiting CLU's AKT activation activity, 
and blocking the AKT/Raf/ERK pathway [79].

Antimitotic

Antimitotic drugs act through stabilization, destabiliza-
tion of microtubule dynamics, and shifting the equilibrium 
between tubulin polymerization and depolymerization. The 

majority of these agents act by preventing the cells from 
entering the G2/M stage [82].

Microtubules perform vital cellular tasks such as chromo-
some separation, cell shape stability, transport, motility, and 
organelle distribution. Microtubules and microtubule-asso-
ciated proteins are the mitotic spindle's major constituents, 
having a crucial role in cell division. Microtubule dynamics 
are required for chromosomal movements during anaphase. 
A change in tubulin-microtubule balance disrupts the mitotic 
spindle, interrupting the metaphase–anaphase transition of 
the cell cycle and leading to cell demise [83, 84]. Microtu-
bule-destabilizing agents also induce apoptosis by inhibiting 
Bcl2 and myeloid cell leukemia-1 (Mcl-1) [85]. Mcl-1 has 
been shown to support cell viability by interfering early in 
a cascade that leads to the cyt c liberation [86]. Hemiaster-
lin and Hemiasterlin A, tripeptides extracted from Auletta, 
Cymbastela, and Siphonochalina sp., have been shown to 
depolymerize microtubules in ovarian OVCAR3 cancer cells 
[22]. Similarly, Hemiasterlin analogue HTI-286 has dem-
onstrated similar behavior in ovarian 1A9 cell lines with 
IC50s of 0.6 nM by disrupting microtubule dynamics [87]. 
Dolastatin 10 (IC50 0.5 nM) and Dolastatin 15 (IC50 3 nM) 
inhibited microtubule assemblage and tubulin-reliant GTP 
hydrolysis in Chinese hamster ovary cells (CHO) [20]. The 
same behavior was shown for Dolastatin 10 and 15 in ovar-
ian OVCAR3 cells with 9.5 × 10−7 and 1.5 × 10−4 μg mL−1, 
respectively [21]. Scleritodermin A, cyclic peptide, has 
shown significant cytotoxicity against ovarian A2780 cell 
with IC50 of 0.94 µM and inhibited microtubule polymeriza-
tion [42]. Symplostatin 1 has been shown to cause micro-
tubule depolymerization in the ovarian SKOV3 cancer cell 
(IC50 0.09 nM) [23]. Cryptophycin-52 (LY355703), a syn-
thetic member of the cryptophycin, has been sown to block 
cervical HeLa S3 cell proliferation by depolymerizing spin-
dle microtubules and disrupting chromosome organization 
[88].

Microtubule-stabilizing agents enhance microtubule 
polymerization and target the cytoskeleton and spindle appa-
ratus of tumor cells by binding to the microtubules, thereby 
disrupting mitosis [83]. Aurilide A and cryptophycin have 
caused microtubule stabilization in cervical HeLa and ovar-
ian SKOV3 and SKVLB1 carcinoma cell lines, respectively 
[28, 29, 63].

Antimetastatic

Non-caspase proteases (elastase and trypsin) cause casps 
activation and apoptosis [89]. Trypsin has been shown to 
possess tumorigenic activity in CeCa and OvCa mediated 
through its receptor protease-activated receptors 2 (PAR2), 
and potentiated by human epididymis protein 4 (HE4). 
PAR2, a trypsin-activated trans-membrane receptor, has 
been implied in the etiology of CeCa and OvCa. HE4, a 
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WAP-family glycoprotein, has been shown to block trypsin 
breakdown [90, 91]. Similarly, chymotrypsin inhibition 
has been shown to induce reactivation of p53 and anti-
cancer activity in CeCa cells [92]. Elastase fragmented 
surface E-cadherin in OvCa cells, causing epithelial mes-
enchymal transition (EMT), leading to OvCa induction 
and migration [93]. E-cadherin acts as a tumor suppressor 
and is frequently found downregulated in OvCa [94]. Sym-
plocamide A, derived from the cyanobacterium Symploca 
sp., has been shown to inhibit chymotrypsin and trypsin 
with IC50s of 0.38 and 80.2 M, respectively [95]. Kem-
popeptin A has been shown to inhibit porcine pancreatic 
elastase (0.32 μM) and bovine pancreatic α-chymotrypsin 
(2.6 μM), whereas Kempopeptin B only inhibited trypsin 
activity (8.4 μM) [32]. Bouillomide A-B inhibited porcine 
pancreatic elastase and chymotrypsin [96]. Molassamide 
inhibited porcine pancreatic elastase and α-chymotrypsin 
with IC50s of 0.032 and 0.234 μM, respectively [97]. Larga-
mides are cyclic peptides derived from the algae Lyngbya 
confervoides and Oscillatoria sp. Largamides A-C inhib-
ited porcine pancreatic elastase, with IC50 values ranging 
from 0.53 to 1.41 M [98]. Largamides D-G also inhibited 
chymotrypsin with IC50 range from 4 to 25 μM [99]. Pom-
panopeptin A, a cyclic peptide isolated from Lyngbya con-
fervoides, has been shown to inhibit trypsin with an IC50 
of 2.4 M [100]. Lyngbyastatin 4, cyclic depsipeptide from 
Lyngbya sp., showed inhibitory activity against elastase 
and chymotrypsin at 0.03 μM [101]. Lyngbyastatin 5–7 
inhibited elastase with IC50S 3.2–8.3 nM and chymotrypsin 
IC50s 2.5–2.8 nM [102]. Lyngbyastatin 8–10 inhibited 
elastase with IC50S of 120–210 nM [103]. Tiglicamides 
A-C, cyclodepsipeptides from the same source, inhibited 
elastase with IC50S 2.14–7.28 μM [104]. Pitipeptolides A 
and B increased elastase inhibitory activity at 50 μg mL−1 
[37]. Somamide B from the same source inhibited elastase 
(9.5 nM) and chymotrypsin (4.2 µM) [102]. Cathepsins D 
and E are lysosomal proteases have been shown to possess 
anti-apoptotic properties and to play an important role in 
CeCa and OvCa [105]. Grassystatins A and B, two linear 
depsipeptides isolated from Lyngbya confervoides, were 
shown to have a substantial inhibitory effect on cathepsins 
D (IC50 of 26.5 and 7.27 nM, respectively) and E. (IC50 
of 886 and 354 pM). Grassystatin C, on the other hand, 
inhibited cathepsins D (IC50 1.62 M) and E (IC50 42.9 nM) 
[106].

Microfilaments play a critical function in cell migra-
tion. Actin is a cytoskeletal microfilament essential for cell 
movement and cytokinesis and other activities essential for 
malignant cell stability. Actin polymerization inhibition 
results in microfilament disruption substantially, reduces cell 
motility, and mitigates metastatic progression of neoplastic 
cells [107]. Hectochlorin, a lipopeptide from Cyanobacte-
ria (Lyngbya majuscula), showed antiproliferative activity 

against OvCa cell lines such as OVCAR3,4,5,8, and SKOV3 
by actin filament disruption with a GI50 of 5.1 µM [46].

Voltage-gated sodium channels (VGSC) are involved in 
cancer cell invasion and metastasis. Na+ ions are essential 
second messengers that are finely regulated in normal cells 
and deregulated in cancer. Apoptosis is characterized by a 
disorganized volume regulation that causes cell shrinkage 
under normal osmotic conditions, resulting in an early rise 
in intracellular sodium concentration [108]. The overexpres-
sion of VGSC has a significant impact on cell migration and 
invasiveness in human CeCa and OvCa and constitutes a 
proteolytic activity of MMP2 [109–111]. Palmyramide A 
was shown to have an IC50 of 17.2 M for inhibiting oua-
bain- and veratridine-induced sodium overload by blocking 
the VGSC [36]. Hermitamides A and B are sodium channel 
blockers, and both inhibit it by ~ 50 and 80% at 1 M, respec-
tively [47].

Antiangiogenic

Angiogenesis is crucial in the development of cancer. VEGF, 
MMP2, and MMP9 all play essential roles in tumor inva-
sion and metastasis [112]. Aplidine from Aplidium albicans 
inhibited cell migration and invasiveness of ovarian 1A9 
cells by inhibiting vascular endothelial growth factor-medi-
ated (VEGF) and blocked the production of matrix metal-
loproteinases (MMP2 and MMP9) [113]. Pardaxin from fish 
showed a similar effect in HeLa cell lines [66, 67].

Cell cycle arrest

Several drugs are capable of interfering with the normal cell 
division, affecting cell viability, which is directly related to 
apoptosis [114]. For example, both Grassypeptolide A-E and 
Mere 15 have been shown to induce G1 and G2/M phase 
arrest in HeLa cells [30, 31, 64].

Mitochondrial dysfunctions and oxidative damage

A mitochondrial malfunction disrupts the cell's redox state, 
causing damage to cell components and potentially lead-
ing to apoptosis [115]. Aurilide has been shown to induce 
mitochondrial fragmentation in HeLa cells, followed by 
mitochondria-induced cell death [116]. ROS accumulation 
causes oxidative stress induced by mitochondrial abnormali-
ties, and cancerous cells contain high ROS concentrations 
[117]. DNA fragmentation is another direct result of oxida-
tive stress, with ensuing DNA damage [118]. Cryptophy-
cins 1 in SKOV3 was found to induce DNA fragmentation 
[63]. Pardaxin induced DNA fragmentation in HeLa and 
HT-1080 cell lines [66, 67]. C-phycocyanin from Spirulina 
platensis has been also shown to scavenge ROS, specifi-
cally peroxyl and hydroxyl radicals [119]. Similarly, BCP-A 
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protein hydrolysate from blood clam demonstrated strong 
radical scavenging and lipid peroxidation inhibition proper-
ties [52]. Binucleated cells have been localized as a result 
of oxidative stress in response to the cyanobacterial product 
symplostatin 1 [23].

Unknown mechanism for anti‑cancer activity

Criamide B, geodiamolide A and G [38], homophymine A-E 
[39], rolloamide A [120], and yaku’amides A and B [121] 
have been isolated from sponges; laxaphycin B from cyano-
bacteria [44]; and urukthapelstatin A from actinobacteria 
[45]. All have been shown potent cytotoxicity in OvCa cells, 
but the precise targets have yet to be determined. Majuscula-
mide C [40], kulokekahilide-2 [122], and elisidepsin [123] 
from mollusks have also been shown to elicit anti-OvCa 
activity, via as of yet, unknown mechanisms.

Caylobolide A [124], homodolastatin 16 [125], koham-
amide A-C [33], palauamide [35], and veraguamide A-G 
[41] have been isolated from cyanobacteria; neamphamide 
B-D [34] and reniochalistatins E [24] have been isolated 
from sponges; polypeptide P2 has been isolated from mol-
lusk [126], styelin D has been isolated from ascidia [127]; 
epinecidin-1 has been isolated from fish [128]; and iturins 
have been isolated from marine-derived bacteria [48]. All 
possess anti-CeCa properties with, as of yet, an unknown 
mechanism. AGAPGG, AERQ, and RDTQ, isolated from 
soft coral (Sarcophyton glaucum) papain hydrolysate, exhib-
ited significant cytotoxicity in HeLa cells, but modest cyto-
toxicity on non-cancerous Hek293 cells. The mechanism has 
yet to be discovered [25].

MDR cancer

Drug resistance is one of the most common reasons for 
chemotherapy ineffectiveness in cancer patients. MDR 
accounts for more than 90% of cancer mortality in patients 
taking standard chemotherapeutics or novel targeted medi-
cines. One of the primary causes of MDR is increased drug 
efflux by membrane ATP-binding cassette (ABC) transport-
ers. Targeting ABC transporters to eliminate or reduce drug 
resistance in cancer treatment is a promising technique. 
Among these members, P-glycoprotein (P-gp) is the most 
well-studied efflux pump involved in MDR cancer, respon-
sible for transporting many anti-cancer medications extracel-
lularly [129, 130].

Hapalosin, a novel cyclic depsipeptide from Hapalosi-
phon welwitschii has been shown to reverse P-gp mediated 
MDR and increases taxol and vinblastine accumulation 
in SKVLB1 P-gp-overexpressing, vinblastine-resistant 
cells [131]. Cryptophycin, a cytotoxic macrocyclic dep-
sipeptide isolated from cyanobacteria Nostoc sp., is an 

antimicrotubule compound that appears to be the poorer 
substrate for P-gp than vinca alkaloids. P-gp overexpres-
sion, OvCa cells have been shown to significantly reduce 
resistance to cryptophycin compared to vinblastine, col-
chicine, and taxol. This characteristic may afford cryp-
tophycin an advantage in the treatment of drug-resistant 
malignancies. Ryptophycin showed antimitotic activity 
in ovarian SKVLB1 via microtubule stabilization [29]. 
Symplostatin 1, a linear pentapeptide from Symploca sp. 
showed apoptosis in OvCa MDR cells NCI/ADR-RES by 
casp-3 increment, Bcl2 decrement, and microtubules depo-
lymerization [23]. Hectochlorin showed antiproliferative 
activity against ovarian MDR cell lines IGROV1 and NCI/
ADR-RES by actin filament disruption [46]. Elisidepsin 
(Kahalalide F synthetic derivative) showed cytotoxicity in 
another MDR cell line IGROV1 [123].

Clinical trial status

Several preclinical studies are followed by fewer clinical 
trials to investigate potential marine peptides against CeCa 
or OvCa. Dolastatin 10's potency and efficacy in preclini-
cal models led to its inclusion in Phase I and Phase II 
clinical studies. Dolastatin 10 was well tolerated in Phase 
II tests in numerous tumor types, although it did not show 
clinical anti-cancer efficacy for OvCa [132]. The dolas-
tatin derivative TZT–1027 (auristatin PE, soblidotin) 
was shown to be more efficacious than conventional anti-
cancer medications such as paclitaxel and vincristine in 
phase II cancer [133, 134]. Aplidine (a second-genera-
tion didemin) has successfully completed phase I clinical 
research for CeCa and OvCa treatments [135]. D'Agostino 
et al. also reported that in a multi-center phase II clinical 
trial, LY355703, a synthetic cryptophycin analog, showed 
only a modest activity in patients with platinum-resistant 
OvCa; however, the considerable rate of disease stabili-
zation in the absence of serious adverse effects showed 
promise for further investigation [136]. A Phase II study of 
a marine cyclic depsipeptide, didemnin-B, was performed 
in patients with progressive epithelial OvCa; however, no 
significant effect was expected with epithelial OvCa. Clini-
cal trials with Didemnin B were stopped due to a lack of 
therapeutic effects [137].

Marine peptide hydrolysates are also evaluated in 
several other clinical trials in gastrointestinal disorders 
(NCT03801057) and elderly individuals (NCT03526744) to 
prevent muscle loss (NCT02890290). Marine-based nutri-
tional supplements are going to be provided against sleep 
disorder and anxiety (NCT04983355).

Overall, ongoing and future clinical trials will make the 
way bright and pave the road in treating OvCa and CeCa.
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Conclusions and future perspectives

CeCa and OvCa are among the top causes of cancer-
related mortality in women around the world. While the 
number of cases is increasing, present therapy options 
have adverse effects, and relapses often occur. There is 
a great need for novel cancer treatments. The discovery 
of novel clinical chemotherapeutic peptides from diverse 
aquatic life can be incorporated into cancer prevention and 
treatment. Despite the fact that CeCa and OvCa affects 
women all over the world, there is a scarcity of informa-
tion in the literature regarding the use of marine peptides 
to inhibit such malignancies [53, 138, 139]. The absence 
of ethnomedicinal background, technological challenges 
in gathering marine species, particularly deep-sea critters, 
and isolation and purification issues are all barriers to anti-
cancer peptide research [140]. Thanks to modern technol-
ogy, it is increasingly possible to extract samples from the 
sea and isolate different peptides from aquatic materials 
[141]. Marine peptides have demonstrated possible anti-
cancer activities against various forms of cancer, such as 
cell growth inhibition, antimitotic activity (anti-tubulin 
effects), apoptosis induction, and migration, invasion, or 
metastasis inhibition. These marine peptides are rich and 
exciting resources for generating anti-cancer therapies and 
a platform for uncovering new therapeutic cellular targets. 
As a result, it is essential to further investigate the anti-
cancer properties of marine peptides. The tolerance of can-
cer cells to chemotherapy is indeed one of the sources of 
modern pharmacotherapy's inefficiency. Marine peptides 
act efficiently as MDR-threatening proteins (Table 1).

Of the isolated compounds to date, only a few have 
been progressed to clinical studies, and a relatively small 
number of peptides have successfully entered the pharma-
ceutical pipeline and have been used clinically. Although 
individual pharmacologically active marine peptides have 
been excluded from further drug discoveries due to dan-
gerous toxicity, there remains the need for the synthesis of 
corresponding analogs to develop new drugs.

Several marine peptides that have been shown to be 
cytotoxic or anti-cancer in other cell lines should be evalu-
ated for action against CeCa and OvCa. Novel approaches 
for isolating and identifying marine peptides that could be 
used as anti-cancer drugs should be developed. The effects 
of marine peptides in conjunction with conventional chem-
otherapy, target therapy, or immunotherapy must be stud-
ied [18]. Short half-life, low bioavailability, processing 
and manufacturing problems, and protease susceptibility 
are significant drawbacks of therapeutic peptides. For low 
cell membrane permeability, cell-penetrating peptides 
are used. Metabolic instability and short half-life may be 
overcome by using D-amino acid substitution, peptide 

cyclization, encapsulation with nanoparticles, pegylation, 
and XTEN conjugation. D-amino acid substitution reduces 
immunogenicity [16, 142–144]. Protein hydrolysates are 
an excellent source of anti-cancer, antioxidant, and anti-
proliferative bioactive chemicals. However, more research 
on the cell cycle phase or apoptosis of cancer cell lines is 
needed. In vivo and in silico researches are also required 
to identify and define the mechanism of action and safety 
of marine peptides and protein hydrolysates [55]. Further 
investigation on the variety of marine peptides in modi-
fication and modes of action provides a rich resource for 
developing novel and potent new medicines.
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