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Abstract 

In this work a set of some cyclic peroxy ketals were tested for their antimalarial activities. Quantitative 

structure activity relationship (QSAR) analysis was applied to 20 organic compounds of the above 

mentioned derivatives using Physicochemical, informational and 2D-autocorelation parameters and modeled 

their antimalarial activity (logIC50) values. The multiple regression analysis clearly indicates that 
5
BIC ,

1
IC, 

MATS4v and  ST  parameters yielded the best model having  R
2
 value of 0.9515. The predictive powers of 

the models were explained using LOO (Leave-One-Out) Cross validation procedure. The results are also 

discussed on the basis of ridge regression. 

  

Keywords: QSAR, Physicochemical, MLR, Ridge regression, 2D-autocorelation, LOO.  

 

1. Introduction  

Malaria is a very serious infectious disease which is caused by protozoans of the genus Plasmodium and is 

transmitted through the bite of infected female Anopheles mosquitoes. Every year, over one million people 

die from malaria, especially in tropical and subtropical areas. Most of the deaths are attributed to the parasite 

species Plasmodium falciparum. Many drugs have been investigated for their efficacy in the treatment of the 

disease, but strains of P. falciparum resistant to some of these drugs have appeared. Hence, the discovery of 

new classes of more potent compounds to treat the disease is necessary [1–6]. In the evolution of 

computational chemistry, the use of molecular modeling (MM) has been one of the most important advances 

in the design and discovery of new drugs. Currently, MM is an indispensable tool in not only the process of 

drug discovery but also the optimization of existing prototypes and the rational design of drug candidates 

[7–10]. According to IUPAC, MM is the investigation of molecular structures and properties using 

computational chemistry and graphical visualization techniques to provide a three-dimensional 

representation of the molecule under a given set of circumstances [8]. QSAR studies use chemometric 

methods to describe how a given biological activity or a physicochemical property varies as a function of the 

molecular descriptors describing the chemical structure of the molecule. Thus, it is possible to replace costly 

biological tests or experiments using a given physicochemical property (especially those involving 

hazardous and toxically risky materials or unstable compounds) with calculated descriptors that can, in turn, 

be used to predict the responses of interest for new compounds [11]. In this study an attempt has been made 

to model antimalarial activity (log IC50) of a set of 20 cyclic peroxy ketals derivative reported by Posner et 
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al. [12] by using few Physicochemical, informational  and 2D-autocorelation descriptors which are simple to 

calculate but very effective in predicting biological activity. The general structure of cyclic peroxy ketals  

derivatives is shown in figure 1. 

 

 

Fig 1. General Structure of peroxy ketals 

 

2. Materials and methods 

2.1 Computational chemistry  

Quantitative Structure Activity Relationship (QSAR) modeling establishes a quantitative correlation 

between chemical structure and biological activity. The methodology used in the present study is to model 

the anti-malarial activities of cyclic peroxy ketals using physicochemical and informational indices. Table 1 

records structural details of 20 cyclic peroxy ketals derivatives. The biological activity is also recorded in 

table 1. Biological activitiy values of 20 peroxy ketals are expressed as logarithm of IC50 ( 50% inhibitory 

concentration, in nM  units).  From the large pool of Physicochemical, Informational and 2D-autocorelation 

descriptors we have selected a few to carryout multiple regression analysis. This selection of descriptors was 

done by using variable selection for multiple regression analysis available with the NCSS software[13]. The 

calculated values of such descriptors are presented in Table 2. The intercorrelatedness among the descriptors 

and their correlation with the activity values logIC50 is presented in Table 3. The regression parameters as 

well as the quality of different models containing one to several correlating parameters are summarized in 

Table 4. Using the best four-parametric model, we have estimated and compared the values of activity. Such 

a comparison is demonstrated in Table 5. Finally, all the proposed models are validated by cross-validation 

method (Table 6)[14]. The presence/absence of co- linearity, if any, was examined by Ridge regression 

parameters. (Table 7, Figs. 3 and 4). 

 

2.2 Molecular parameters used 

DRAGON software [15] has been used for calculation of all Physicochemical, Informational and 2D-

autocorelation descriptors. In fact before this study, topological parameters have been very successfully used 

by our research group in modeling different activities of drug molecules[16-19] .  The details of parameters 

which are used in present study-  

 

(i) Informational  - theoretic topological indices 

Information - theoretic topological indices are calculated by the application of information-theoretic   

concepts on chemical graphs [20-23, 25-26]. An appropriate set A of n elements is derived from a graph G 

depending upon certain structural characteristics. On the basis of an equivalence relation defined on A, the 

set A is partitioned into disjoint subsets Ai of order ni (i= 1, 2,……h; ∑i ni = n). A probability distribution is 

then assigned to the set of equivalence classes: A1, A2, ………..Ah and p1, p2,.……….. Ph 

Where pi = ni/n is the probability that a randomly selected element of A will occur in the i
th

  subset. 

 The mean information content of an element of A is defined by Shannon's relation [24].       

O O

R

RO

Ar
-CH3
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                                                                                                 (1) 

      The logarithm is taken at base 2 for measuring the information content in bits. The total information 

content of the set A is then n times IC. 

Mean informationa content index 

                                 (2) 

ni - number of atoms in the i
th

 class 

n - The total number of atoms in the molecule 

k - Number of atomic layers in the coordination sphere around a given atom that are accounted for 

Bonding information content index (
k
BIC) 

                             where     (3) 

                                                                                

ni - number of atoms in the i
th

 class 

n - The total number of atoms in the molecule 

k - Number of atomic layers in the coordination sphere around a given atom that are accounted for 

q - Number of edges in the molecular graph 

 

(ii) 2D-autocorelation descriptors 

Another interesting set of molecular descriptors implemented in DRAGON , and widely used in molecular 

modeling , are 2D-autocorelation  [27-28]. These descriptors have their origin in the autocorrelation of the 

topological structure calculation of Broto - Moreau (ATS) , of Moran (MATS) , and of Geary(GATS). The 

computational of these descriptors involves summing different autocorrelation functions corresponding to 

the different fragment lengths , thereby leading to different autocorrelation vectors according to the lengths 

of the structural fragments. 

Moran’s Indices:  

      l  =                                                                        (4)                                            

where ATS l w , MATS l w , and GATS l w are Broto- Moreau’s autocorrelation coefficient, Moran’s index, 

and Geary’s coefficient at spatial lag l, respectively; where i w and j w are the values of any atomic property 

of atom i and j respectively; w is the average value of property; L is the number of nonzero values in the 

sum, N is the number of atoms in the molecule, and   is a Dirac-delta function defined as   

                                                                                                   (5) 

where dij is the topological distance or spatial lag between atoms i and j. 

(iii) Surface Tension () – Surface tension is the Physicochemical parameter which is calculated by the 

following formula. 

                                                                                                                                (6) 

ChemSketch calculates the surface tension from calculated Molar Volume and calculated Parachor  [29]. 

 

3. Results and Discussions  

The data presented in Table 4 indicates that statistically allowed model start pouring using two or more 

parameters as correlating descriptors. We observed that in all these higher parametric models ST  is 
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invariably present as one of the correlating descriptors. By examination of Table 4 we also observed that 

both R
2
 and R

2
A go on increasing with each addition of descriptor in the regression analysis. This indicates 

that addition of descriptor in each case is favorable for the exhibition of the activity. 

 

One-variable model 

logIC50  = -0.0824(±0.0218)
  
ST

   
+5.7173 

N=20,  R
2    

=0.4435, 
    

R
2 
A= 0.4126,  Se= 0.01248, F= 14.345, Q=

    
5.3362        (7) 

Here, and here after N is the number of compound , Se is the standard error of estimation, R2 is the square 

of correlation coefficient , R2 Adj is the adjusted R2 , F is the Fisher’s ratio, and Q is the Pogliani’s quality 

factor which is the ratio of R/ Se.(Pogliani,1994,1996)[30-31] 

 

Two -variable model 

logIC50  = 7.6099(±2.3238)
 5

BIC -0.0729(±0.0178)
 
 
 
ST -0.1211 

N=20,  R
2  

=0.6588, 
    

R
2 
A= 0.6186,  Se= 0.1006, F= 16.409, Q=

 
5.1907            (8)        

 

Three variable model 

logIC50  = 12.1159.(±1.2894)
 5

BIC -1.7379(±0.2344)
 1

IC 
 
-0.0562(±0.0090)

 
ST

  
-0.2701 

N=20,  R
2    

= 0.9231, 
    

R
2 

A= 0.9087,  Se= 0.0492, F=64.001, Q=
   

19.5281           (9) 

 

Four  Variable model 

logIC50=10.3058(±0.1.2209)
5
BIC-1.7430(±0.1922)

1
IC+1.1180(±0.3770)MATS4v-0.0551(±0.0074)ST

  

+1.0592 

N=20,  R
2    

=0.9515, 
    

R
2 
A= 0.9386,  Se= 0.0404, F= 73.586, Q=  24.1448        (10) 

 

Table-1 Structural details of the compounds with their experimental activity log IC50  values. 
Comp.No. Ar R,R log IC50   

1 Ph Me,Me 3.041 

2 Ph Cyclopentyl 2.279 

3 Ph Cyclohexyl 2.447 

4 Ph Cycloheptyl 2.342 

5 4-MeOPh Cyclobutyl 2.204 

6 4-MeOPh  Cyclohexyl 2.255 

7 4-MeOPh  Cycloheptyl 2.322 

8 3,4,5-(MeO)3Ph Cycloheptyl 2.079 

9 4-CF3OPh Cycloheptyl 1.785 

10 4-ClPh Cycloheptyl 1.763 

11 4-FPh Cycloheptyl 1.929 

12 4-MeSPh Cycloheptyl 1.892 

13 4-MeS(O)2Ph Cycloheptyl 1.491 

14 4-EtPh Cycloheptyl 2.255 

15 4-MeSPh Cyclohexyl 2.204 

16 4-MeS(O)2Ph Cyclohexyl 1.748 

17 4-O2NPh Cyclohexyl 1.663 

18 4-ClPh Cyclohexyl 2.000 

19 4-FPh Cyclohexyl 2.301 

20 4-F3CPh Cyclohexyl 2.146 
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Table 2. Calculated Values of Physicochemical, Informational and 2D-autocorelation Parameters. 

S.No. ST D 
0
IC 

0
BIC 

1
IC 

5
BIC MATS1v MATS2v MATS3v MATS4v 

1 38.300 1.100 1.348 0.259 2.261 0.778 -0.050 0.085 -0.190 0.043 

2 43.700 1.120 1.247 0.212 2.108 0.705 0.022 -0.060 -0.069 0.068 

3 43.100 1.090 1.224 0.203 2.035 0.713 0.021 -0.076 -0.019 -0.018 

4 42.600 1.070 1.204 0.196 1.971 0.689 0.020 -0.089 0.035 -0.112 

5 45.100 1.170 1.311 0.225 2.289 0.750 -0.010 -0.027 0.030 -0.088 

6 43.600 1.110 1.260 0.206 2.124 0.723 -0.008 -0.018 -0.014 -0.045 

7 43.100 1.090 1.240 0.199 2.055 0.700 -0.007 -0.036 0.039 -0.131 

8 44.100 1.120 1.293 0.203 2.100 0.701 -0.054 0.055 0.054 -0.139 

9 40.600 1.180 1.463 0.235 2.354 0.700 -0.007 -0.058 0.042 -0.125 

10 44.300 1.130 1.307 0.212 2.138 0.689 0.018 -0.070 0.034 -0.118 

11 41.800 1.110 1.307 0.212 2.138 0.689 0.020 -0.087 0.035 -0.114 

12 45.300 1.110 1.288 0.207 2.131 0.700 0.022 -0.052 0.037 -0.134 

13 47.800 1.170 1.369 0.217 2.257 0.701 0.021 -0.055 0.038 -0.134 

14 42.100 1.050 1.186 0.189 2.019 0.706 0.019 -0.057 0.044 -0.133 

15 46.000 1.130 1.313 0.215 2.204 0.723 0.023 -0.036 -0.014 -0.051 

16 48.700 1.200 1.397 0.226 2.335 0.723 0.022 -0.039 -0.012 -0.051 

17 49.100 1.190 1.420 0.233 2.309 0.716 0.028 -0.065 -0.024 -0.023 

18 45.000 1.160 1.334 0.222 2.218 0.713 0.019 -0.056 -0.018 -0.025 

19 42.200 1.130 1.334 0.222 2.218 0.713 0.021 -0.073 -0.019 -0.019 

20 39.900 1.190 1.453 0.239 2.359 0.717 0.020 -0.046 -0.035 -0.029 

 

As the data set contains only 20 compounds no higher parametric correlation is permitted. Therefore, the 

four-parametric model obtained above is the best model for estimating logIC50 activity of proposed set of 

compounds.  

 

Table 3. Correlation matrix 

  logIC50 ST D 
0
IC 

0
BIC 

1
IC 

5
BIC MATS1v MATS2v MATS3v MATS4v 

logIC50 1.000           

ST -0.666 1.000          

D -0.586 0.427 1.000         

0
IC -0.435 0.101 0.886 1.000        

0
BIC 0.092 -0.177 0.635 0.805 1.000       

1
IC -0.333 0.151 0.904 0.944 0.851 1.000      

5
BIC 0.567 -0.163 0.163 0.211 0.655 0.435 1.000     

MATS1v -0.457 0.401 0.145 -0.003 -0.239 -0.022 -0.460 1.000    

MATS2v 0.470 -0.236 -0.039 0.092 0.381 0.163 0.657 -0.892 1.000   

MATS3v -0.617 0.314 -0.040 -0.183 -0.665 -0.279 -0.742 0.232 -0.471 1.000  

MATS4v 0.477 -0.132 0.147 0.130 0.506 0.241 0.560 0.043 0.170 -0.875 1.000 
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Table 4.  Regression parameters and quality of correlation 
Model N° Parameters Ai=(1……6) B Se R

2
 R

2 A
 F Q=R/Se 

1. d -4.7456(±1.5450) 7.4746 0.1355 0.3439 0.3074 9.435 4.3279 

2. ST -0.0824(±0.0218) 5.7173 0.1248 0.4435 0.4126 14.345 5.3362 

3. 
0
IC -1.9183(±0.9349) 4.6297 0.1507 0.1896 0.1445 4.210 2.8894 

4. 
1
IC -0.9804(±0.6551) 4.2457 0.1578 0.1107 0.0612 2.240 2.1085 

5. 
0
BIC

 
1.8874(±4.8415) 1.6985 0.1666 0.0084 0.000 0.152 0.5501 

6. 
5
BIC

 
9.1679(±3.1427) -4.4244 0.1379 0.3210 0.2833 8.510 4.1085 

7. MATS1v -6.6065(±3.0270) 2.1602 0.1488 0.2093 0.1653 4.763 3.0746 

8. MATS2v 3.7420(±1.6553) 2.2682 0.1477 0.2211 0.1779 5.111 3.1836 

9. MATS3v -3.7821(±1.1356) 2.1024 0.1316 0.3813 0.3469 11.093 4.6922 

10. MATS4v 2.6173(±1.1367) 2.2876 0.1471 0.2275 0.1846 5.302 3.2425 

11. 

 

d 

ST 

-2.9882(±1.4483) 

-0.0629(±0.0221) 

8.2415 0.1149 0.5549 0.5026 10.599 6.4832 

12. 
0
IC 

ST 

-1.6384(±0.6958) 

-0.0777(±0.0195) 

7.6678 0.1115 0.5803 0.5310 11.755 6.8321 

13. 
1
IC 

ST 

-0.7000(±0.5120) 

-0.0779(±0.0215) 

7.0496 0.1219 0.4986 0.4396 8.453 5.7926 

14. 
0
BIC 

ST 

-0.5595(±3.7894) 

-0.0830(±0.0227) 

5.8645 0.1284 0.4442 0.3788 6.794 5.1907 

15. 
5
BIC 

ST 

7.6099(±2.3238) 

-0.0729(±0.0178) 

-0.1211 0.1006 0.6588 0.6186 16.409 8.0682 

16. MATS1v 

ST 

-3.2775(±2.7392) 

-0.0711(±0.0235) 

5.2503 0.1234 0.4867 0.4263 8.060 5.6535 

17. MATS2v 
ST 

2.6388(±1.3362) 
-0.0727(±0.0208) 

5.4067 0.1159 0.5473 0.4941 10.278 6.3831 

18. MATS3v 
ST 

-2.7744(±0.9538) 
-0.0648(±0.0193) 

4.9422 0.1050 0.6284 0.5847 14.375 7.5497 

19. MATS4v 

ST 

2.1716(±0.8519) 

-0.0759(±0.0192) 

5.5829 0.1093 0.5974 0.5500 12.613 7.0715 

20. 
5
BIC 

d 

ST 

9.7041(±1.4650) 

-4.3724(±0.7995) 

-0.0417(±0.0122) 

1.9658 0.0612 0.8811 0.8588 39.510 15.3377 

21. 
5
BIC 

0
IC 

ST 

9.5290(±1.3348) 

-2.2349(±0.3604) 

-0.0641(±0.0100) 

1.0673 0.0562 0.8997 0.8809 47.857 16.8777 

22. 
5
BIC 

1
IC 

ST 

12.1159(±1.2894) 

-1.7379(±0.2344) 

-0.0562(±0.0090) 

-0.2701 0.0492 0.9231 0.9087 64.001 19.5281 

23. 
0
BIC 

5
BIC 

ST 

-11.7084(±2.7353) 

13.5225(±2.1407) 
-0.0779(±0.0126) 

-1.5770 0.0708 0.8409 0.8111 28.194 12.9521 

24. 
5
BIC 

MATS1v 

ST 

7.5625(±2.6623) 

-0.1043(±2.5588) 

-0.0726(±0.0197) 

-0.0996 0.1037 0.6588 0.5948 10.298 7.827 

25. 
5
BIC 

MATS2v 

ST 

7.1593(±3.1314) 

0.3208(±1.5633) 

-0.0722(±0.0186) 

0.1593 0.1035 0.6597 0.5958 10.337 7.8475 

26. 
5
BIC 

MATS3v 

ST 

5.2797(±3.4566) 

-1.2431(±1.3597) 

-0.0679(±0.0187) 

1.3194 0.1011 0.6757 0.6149 11.112 8.1307 

27. 
5
BIC 

MATS4v 
ST 

5.8364(±2.7536) 

1.0875(±0.9293) 
-0.0718(±0.0176) 

1.1723 0.0995 0.6857 0.6267 11.633 8.3223 

28. 
5
BIC 

d 
1
IC 

ST 

13.1583(±1.6011) 
2.4410(±2.2455) 

-2.5909(±0.8185) 

-0.0655(±0.0123) 

-1.5082 0.0490 0.9287 0.9097 48.842 19.6672 

29. 
5
BIC 

0
IC 

1
IC 

ST 

12.9805(±1.9479) 

0.8512(±1.4139) 

-2.3533(±1.0498) 

-0.0537(±0.0101) 

-0.7754 0.0502 0.9249 0.9049 46.179 19.1577 

30. 
0
BIC 

5
BIC 

1
IC 

ST 

3.7827(±4.1451) 

11.2780(±1.5885) 

-2.1515(±0.5108) 
-0.0506(±0.0109) 

0.1648 0.0495 0.9271 0.9077 47.708 19.4517 

31. 
5
BIC 

1
IC 

MATS1v 

ST 

12.7605(±1.4427) 

-1.7721(±0.2369) 

1.2242(±1.2281) 

-0.0594(±0.0095) 

-0.5252 0.0492 0.9279 0.9086 48.231 19.5788 

32. 
5
BIC 

1
IC 

MATS2v 

ST 

12.8033(±1.7010) 

-1.7602(±0.2414) 

-0.4872(±0.7655) 

-0.0570(±0.0092) 

-0.6978 0.0502 0.9251 0.9051 46.318 19.1598 

33. 
5
BIC 

1
IC 

MATS3v 

ST 

9.7785(±1.6303) 

-1.7383(±0.2135) 
-1.2476(±0.6033) 

-0.0512(±0.0085) 

1.1755 0.0448 0.9401 0.9242 58.899 21.6426 

34. 
5
BIC 

1
IC 

MATS4v 

ST 

10.3058(±1.2209) 

-1.7430(±0.1922) 

1.1180(±0.3770) 

-0.0551(±0.0074) 

1.0592 0.0404 0.9515 0.9386 73.586 24.1448 
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Table 5. Observed and estimated values of logIC50  using model No. 34 . 

Comp.No. Obs. logIC50   Est. logIC50   Residual 

1 3.04 3.07 -0.03 

2 2.28 2.32 -0.04 

3 2.45 2.46 -0.02 

4 2.34 2.25 0.09 

5 2.20 2.21 -0.01 

6 2.26 2.35 -0.10 

7 2.32 2.17 0.15 

8 2.08 2.04 0.04 

9 1.79 1.79 -0.01 

10 1.76 1.86 -0.10 

11 1.93 2.00 -0.07 

12 1.89 1.91 -0.02 

13 1.49 1.57 -0.07 

14 2.26 2.35 -0.09 

15 2.20 2.08 0.13 

16 1.75 1.70 0.05 

17 1.66 1.68 -0.02 

18 2.00 2.03 -0.03 

19 2.30 2.19 0.11 

20 2.15 2.11 0.04 

 

The predictive power of this model comes out to be 0.9515, indicating that about 95% of the data is 

explained by this model. The estimated activity values using the best four- parametric model has been 

reported in Table 5, and are in good agreement with the observed ones confirming that the proposed four-

parametric model is best suitable for modeling, estimating logIC50 activity of present set of compounds. All 

the above models have been tested using cross validated parameters. These parameters are reported in Table 

6. It is worth mentioning that PRESS is a good estimate of the real predictive power of the model. If PRESS 

is smaller than SSY, the model predicts better than chance and can be considered statistically significant. 

Table 6 shows that in this regard, all the models proposed by us are better than chance and are statistically 

significant. The ratio PRESS / SSY can be used to calculate the approximate confidence interval of the 

prediction of new compounds. To be a reasonable QSAR model, this ratio should be smaller than 0.4. The 

models proposed by us are found to have this ratio smaller than 0.4 and the model expressed by equation 8 

,9, 10 and 11 has the excellent predictive power. The developed models are cross-validated by leave-one-out 

method. The high values observed in case of eqn. 11 (R
2
CV = 0.9490) are indicative of their reliability in 

prediction of biological activity. Another cross-validated parameter related to uncertainty of prediction, the 

PSE, is calculated. The lowest value of PSE for model 34 (eq.11) supports its highest predictive potential 

(power). The highest R
2

CV and lowest PSE for the model 34 shows that this is the most appropriate model 

for modeling logIC50 value of 20 compounds used in the present study. 

We have further carried out analysis to test model-34 whether it suffers from the defect due to co- linearity. 

For this we have, subjected this model to Ridge analysis and calculated Ridge traces [Fig. 3 and 4]. All these 

results have finally demonstrated that the proposed model-34 is the most appropriate model for modeling the 

activity and that it is devoid of any co- linearity defect                
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Table  6.   Cross validated parameters for different models. 

Model No. Parameters used PRESS/SSY R
2

cv SPRESS PSE 

1. ST 1.2548 -0.2548 0.2631 0.2496 

2. 
5
BIC 

ST 

0.5180 0.4820 0.2120 0.1954 

3. 
5
BIC 

1
IC 

ST 

0.0833 0.9167 0.1037 0.0928 

4. 
5
BIC 

1
IC 

MATS4v 

ST 

0.0510 0.9490 0.0851 0.0737 

 

 

Figure 2. Correlation between Observed and estimated activity for model 34. 

 

Table7. Ridge analysis parameters for four parametric model. 

Model No. Parameters  VIF Tolerence Eigenvalue Condition no. 

4 ST
 

1
IC 

5
BIC 

MATS4v 

1.0988 

1.3156 

1.7610 

1.4603 

0.9101 

0.7601 

0.5679 

0.6848 

1.8510 

1.1269 

0.6461 

0.3758 

1.00 

1.64 

2.86 

4.92 
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Fig.3: Ridge trace for four-variable model 
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Fig.4 : VIF plot for four variable model 

 

4. Conclusion 

On the basis of above discussion we may conclude that:  

1. Surface Tension (ST) plays an important role while  modeling the antimalarial activity .  

2. 2D- autocorrelation and informational descriptors are good for modeling the antimalarial activity of 

present set of compounds. 

3.  Higher the value of 
5
BIC and MATS4v and lower the value of 

1
IC and ST  the better will be the 

antimalarial activity. 

 Therefore while modifying the molecular structure for better activity above points should be kept in 

consideration. 
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