Даниил Федоров Profile Даниил Федоров

The effects of severe hypobaric hypoxia and inhibition of hypoxia-inducible factor-1 (hif-1) on biomarkers of cardiac and skeletal muscle injury in rats

  • Authors Details :  
  • D. A. Fedorov,  
  • M. Yu. Frolova,  
  • I. E. Krasovskaya,  
  • N. V. Kuleva

Journal title : Biophysics

Publisher : Pleiades Publishing Ltd

Online ISSN : 1555-6654

Page Number : 808-811

Journal volume : 64

Journal issue : 5

413 Views Original Article

The goal of the present study was to investigate the molecular mechanisms that underlie heart andskeletal muscle damage in male Wistar rats weighing 200–250 g in response to a 3-h exposure to 180 mm Hg(5% O2) in the model of severe hypobaric hypoxia. It has been demonstrated that the level of the cardiac bio-marker troponin I in the blood plasma of rats exposed to severe hypobaric hypoxia for 3 h increased signifi-cantly compared to the control group, indicating myocardial injury. At the same time, the administration ofthe HIF-1α transcription factor inhibitor did not affect the plasma level of troponin I. In contrast, the releaseof the non-specific biomarker myoglobin into the bloodstream did not increase in response to hypoxia com-pared to the control animals. In addition, 24 h after the exposure to severe hypobaric hypoxia the serum myo-globin level was significantly lower in animals administered with the HIF-1α inhibitor topotecan than in ratsthat did not receive topotecan. Therefore, it may be assumed that the inhibition of the HIF-1α transcriptionfactor 10 min before exposure to severe hypobaric hypoxia reduces skeletal muscle damage. The mechanismsthat affect the adaptation of heart and skeletal muscles to hypoxia are discussed.

Article DOI & Crossmark Data

DOI : https://doi.org/10.1134/S000635091905004X

Article Subject Details


Article Keywords Details



Article File

Full Text PDF


Article References

  • (1). E. Rybnikova and M. Samoilov, Front. Neurosci. 23 (9), 388 (2015).
  • (2). W. Kaelin and P. Rateliffe, Mol. Cell. 30, 393 (2008)
  • (3). Y. Sun, X. Chen, et al., Front. Mol. Neurosci. 10, 257 (2017).
  • (4). O. V. Vetrovoy, Extended Abstract of Candidate’s Dissertation in Biology (St. Petersburg, 2018) [In Russian].
  • (5). W. Kaelin, Ann. Rev. Biochem. 74, 115 (2005).
  • (6). K. Janke, U. Brockmeier, et al., J. Cell Sci. 126 (12), 2629 (2013).
  • (7). E. Rybnikova, N. Sitnik, et al., Brain Res. 1089 (1), 195 (2006).
  • (8). H. Ban, Y. Uto, and H. Nakamura, Expert Opin. Ther. Pat. 21, 131 (2011).
  • (9). O. V. Vetrovoy, Candidate’s Dissertation in Biology (St. Petersburg, 2018) [In Russian].
  • (10). N. A. Plokhinskiy, in Current Problems in Modern Genetics, Ed. by S. I. Alikhanyan (Moscow State Univ., Moscow, 1966), pp. 564–602 [in Russian].
  • (11). J. K. Brunelli, E. Bell, et al., Cell Metab. 1, 409 (2005).
  • (12). K. Mansfield, R. Gury, et al., Cell Metab. 1, 393 (2005).
  • (13). R. Hagen, C. Taylor, et al., Science 302, 1975 (2003).
  • (14). R. Dangel, O. Bernardette, et al., Sci. Rep. 7 (12092), 1 (2017)
  • (15). M. Feelisch, C. Pensenstadler, et al., J. Biol. Chem. 283, 33927 (2008).
  • (16). N. V. Kuleva and I. E. Krasovskaya, Tsitologiya 57 (8): 563 (2015).
  • (17). N. V. Kuleva, D. A. Fedorov, and I. E. Krasovskaya, Tsitologiya 60 (1), 5 (2018).
  • (18). N. V. Kuleva and I. E. Krasovskaya, Biophysics (Moscow) 61 (5), 717 (2016).
  • (19). T. Clanton, J. Appl. Physiol. 102, 2379 (2007).
  • (20). T. Chaillou, Front. Physiol. 9 (1450), 1 (2018).