Dr. Salman Ahmed
Marine cyanobacterial peptides in neuroblastoma: search for better therapeutic options
- Authors Details :
- Salman Ahmed,
- Waqas Alam,
- Michael Aschner,
- Rosanna Filosa,
- Wai San Cheang,
- Philippe Jeandet,
- Luciano Saso,
- Haroon Khan
Journal title : Cancers
Publisher : MDPI AG
Online ISSN : 2072-6694
Page Number : 2515
Journal volume : 15
Journal issue : 9
278 Views
Reviews Article
Neuroblastoma is the most prevalent extracranial solid tumor in pediatric patients, originating from sympathetic nervous system cells. Metastasis can be observed in approximately 70% of individuals after diagnosis, and the prognosis is poor. The current care methods used, which include surgical removal as well as radio and chemotherapy, are largely unsuccessful, with high mortality and relapse rates. Therefore, attempts have been made to incorporate natural compounds as new alternative treatments. Marine cyanobacteria are a vital source of physiologically active metabolites, which have recently received attention owing to their anticancer potential. This review addresses cyanobacterial peptides' anticancer efficacy against neuroblastoma. Numerous prospective studies have been carried out with marine peptides for pharmaceutical development, including research on anticancer potential. Marine peptides possess several advantages over proteins or antibodies, including small size, simple manufacturing, cell membrane crossing capabilities, minimal drug-drug interactions, minimal changes in blood-brain barrier (BBB) integrity, selective targeting, chemical and biological diversities, and effects on liver and kidney functions. We discussed the significance of cyanobacterial peptides in generating cytotoxic effects and their potential to prevent cancer cell proliferation via apoptosis, the activation of caspases, cell cycle arrest, sodium channel blocking, autophagy, and anti-metastasis behavior.
Article DOI & Crossmark Data
DOI : https://doi.org/10.3390/cancers15092515
Article Subject Details
Article Keywords Details
Article File
Full Text PDF
Article References
- (1). 10.1002/pbc.28473
- (2). 10.1016/j.ctro.2022.02.009
- (3). 10.1002/med.21750
- (4). Fati, F., Pulvirenti, R., Paraboschi, I., and Martucciello, G. (2021). Surgical Approaches to Neuroblastoma: Review of the Operative Techniques. Children, 8.
- (5). 10.1016/j.ejphar.2022.175030
- (6). 10.21873/anticanres.13721
- (7). 10.3389/fmars.2020.614766
- (8). 10.1007/s13659-020-00293-7
- (9). Cappello, E., and Nieri, P. (2021). From Life in the Sea to the Clinic: The Marine Drugs Approved and under Clinical Trial. Life, 11.
- (10). Pereira, R.B., Evdokimov, N.M., Lefranc, F., Valentão, P., Kornienko, A., Pereira, D.M., Andrade, P.B., and Gomes, N.G.M. (2019). Marine-Derived Anticancer Agents: Clinical Benefits, Innovative Mechanisms, and New Targets. Mar. Drugs, 17.
- (11). Ahmed, I., Asgher, M., Sher, F., Hussain, S.M., Nazish, N., Joshi, N., Sharma, A., Parra-Saldívar, R., Bilal, M., and Iqbal, H.M.N. (2022). Exploring Marine as a Rich Source of Bioactive Peptides: Challenges and Opportunities from Marine Pharmacology. Mar. Drugs, 20.
- (12). Kang, H.K., Choi, M.-C., Seo, C.H., and Park, Y. (2018). Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides. Int. J. Mol. Sci., 19.
- (13). Hachicha, R., Elleuch, F., Ben Hlima, H., Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., and Michaud, P. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Appl. Sci., 12.
- (14). Qamar, H., Hussain, K., Soni, A., Khan, A., Hussain, T., and Chénais, B. (2021). Cyanobacteria as Natural Therapeutics and Pharmaceutical Potential: Role in Antitumor Activity and as Nanovec-tors. Molecules, 26.
- (15). Zahra, Z., Choo, D.H., Lee, H., and Parveen, A. (2020). Cyanobacteria: Review of Current Potentials and Applications. Environments, 7.
- (16). 10.1016/j.biopha.2021.112038
- (17). 10.1016/j.cellsig.2021.110142
- (18). 10.1007/s11010-021-04306-y
- (19). Ahmed, S., Alam, W., Jeandet, P., Aschner, M., Alsharif, K.F., Saso, L., and Khan, H. (2022). Therapeutic Potential of Marine Peptides in Prostate Cancer: Mechanistic Insights. Mar. Drugs, 20.
- (20). 10.3892/ijo.2020.5099
- (21). Lopes, G., Silva, M., and Vasconcelos, V. (2022). The Pharmacological Poten-tial of Cyanobacteria, Academic Press.
- (22). 10.3389/fmicb.2017.00515
- (23). 10.3389/fmars.2021.667764
- (24). Zhang, J.-N., Xia, Y.-X., and Zhang, H.-J. (2021). Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int. J. Mol. Sci., 22.
- (25). 10.4062/biomolther.2019.082
- (26). 10.22146/ijp.1270
- (27). Abdalla, M.A., and McGaw, L.J. (2018). Natural Cyclic Peptides as an Attractive Modality for Therapeutics: A Mini Review. Molecules, 23.
- (28). 10.2174/1385272823666190110103558
- (29). 10.3390/molecules190812368
- (30). 10.1021/np0503911
- (31). 10.1021/np9001674
- (32). 10.1021/np020492o
- (33). 10.4014/jmb.1105.05011
- (34). 10.1021/acs.jnatprod.7b00751
- (35). 10.1021/np900428h
- (36). Mondal, A., Bose, S., Banerjee, S., Patra, J., Malik, J., Mandal, S., Kilpatrick, K., Das, G., Kerry, R., and Fimognari, C. (2020). Marine Cyanobacteria and Microalgae Metabolites—A Rich Source of Potential Anticancer Drugs. Mar. Drugs, 18.
- (37). 10.1016/j.tet.2005.09.036
- (38). 10.1021/ja801383f
- (39). 10.1021/np200270d
- (40). 10.1021/np070280x
- (41). 10.1021/ja7110064
- (42). 10.3390/md11083015
- (43). 10.1039/C5CC01535A
- (44). Barreca, M., Spanò, V., Montalbano, A., Cueto, M., Marrero, A.R.D., Deniz, I., Erdo?an, A., Bilela, L.L., Moulin, C., and Taffin-De-Givenchy, E. (2020). Marine Anticancer Agents: An Overview with a Particular Focus on Their Chemical Classes. Mar. Drugs, 18.
- (45). 10.1021/np000037x
- (46). 10.1016/j.chembiol.2004.03.030
- (47). 10.1016/j.phytochem.2010.07.001
- (48). 10.1073/pnas.0712198105
- (49). 10.1021/np0706769
- (50). 10.1055/s-0029-1185675
- (51). 10.4155/fmc.12.75
- (52). 10.1021/np8003529
- (53). 10.1016/j.watres.2021.117017
- (54). 10.1016/j.chembiol.2010.10.017
- (55). 10.1080/14786419.2016.1207074
- (56). 10.1021/jo0478858
- (57). Hau, A.M., Greenwood, J.A., Löhr, C.V., Serrill, J.D., Proteau, P.J., Ganley, I.G., McPhail, K.L., and Ishmael, J.E. (2013). Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells. PLoS ONE, 8.
- (58). 10.1007/s10637-015-0303-x
- (59). 10.1021/acschemneuro.0c00093
- (60). Alvariño, R., Alonso, E., Bornancin, L., Bonnard, I., Inguimbert, N., Banaigs, B., and Botana, L. (2020). Biological Activities of Cyclic and Acyclic B-Type Laxaphycins in SH-SY5Y Human Neuroblastoma Cells. Mar. Drugs, 18.
- (61). 10.1021/ol017275j
- (62). Carmichael, W.W., Mahmood, N.A., and Hyde, E.G. (1990). Marine Toxins, ACS Publications.
- (63). 10.3390/md13116910
- (64). 10.3109/13880209509067083
- (65). 10.1016/j.phytochem.2007.01.012
- (66). 10.1099/ijs.0.033761-0
- (67). 10.1111/jpy.12115
- (68). 10.1016/j.peptides.2017.06.002
- (69). 10.1021/np200077f
- (70). Mi, Y., Zhang, J., He, S., and Yan, X. (2017). New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade. Mar. Drugs, 15.
- (71). 10.1016/B978-0-12-416003-3.00024-X
- (72). 10.1021/np200076t
- (73). 10.1016/j.phytochem.2011.07.014
- (74). 10.1016/j.chembiol.2009.06.012
- (75). 10.1155/2014/150845
- (76). 10.1080/01926230701320337
- (77). 10.1110/ps.04789804
- (78). 10.1146/annurev.biochem.73.011303.073706
- (79). 10.1038/nature04323
- (80). 10.1111/imr.12541
- (81). 10.18632/aging.104207
- (82). 10.1172/jci.insight.127130
- (83). 10.1016/j.chembiol.2011.01.001
- (84). 10.1158/1538-7445.AM2019-3657
- (85). 10.3389/fcell.2020.578770
- (86). 10.1186/s13046-016-0433-9
- (87). 10.1080/19336950.2019.1666455
- (88). Djamgoz, M.B.A., Fraser, S.P., and Brackenbury, W.J. (2019). In Vivo Evidence for Voltage-Gated Sodium Channel Expression in Carcinomas and Potentiation of Metastasis. Cancers, 11.
- (89). 10.3389/fonc.2021.620390
- (90). 10.1111/bph.12704
- (91). 10.1155/2015/690916
- (92). 10.1158/1535-7163.MCT-13-0791
- (93). 10.1002/med.20242
- (94). 10.1016/j.biocel.2004.04.007
- (95). 10.1111/bcp.13126
- (96). 10.5483/BMBRep.2019.52.7.152
- (97). 10.1124/mol.109.056085
- (98). Gupta, S.P. (2020). Cancer-Leading Proteases, Academic Press.
- (99). 10.1007/s00018-010-0287-9
- (100). 10.1007/s11060-014-1387-4
- (101). 10.1039/c0cc02889d
- (102). 10.1007/s00018-019-03351-7
- (103). 10.3389/fonc.2019.01370
- (104). 10.1186/s13578-021-00570-z
- (105). 10.3389/fonc.2020.578418
- (106). 10.1186/s13045-019-0754-1
- (107). 10.1038/s41598-018-30977-7
- (108). McGregor, G.B., and Sendall, B.C. (2022). Advances in Phytoplankton Ecology, Elsevier.
- (109). Ruiz-Torres, V., Encinar, J.A., Herranz-López, M., Pérez-Sánchez, A., Galiano, V., Barrajón-Catalán, E., and Micol, V. (2017). An Updated Review on Marine Anticancer Compounds: The Use of Virtual Screening for the Discovery of Small-Molecule Cancer Drugs. Molecules, 22.
- (110). 10.1158/1078-0432.CCR-12-0290
- (111). Khalifa, S.A.M., Elias, N., Farag, M.A., Chen, L., Saeed, A., Hegazy, M.-E.F., Moustafa, M.S., El-Wahed, A.A., Al-Mousawi, S.M., and Musharraf, S.G. (2019). Marine Natural Products: A Source of Novel Anticancer Drugs. Mar. Drugs, 17.
- (112). 10.1200/jco.2004.22.90140.7530
- (113). Lopes, G., Silva, M., and Vasconcelos, V. (2022). The Pharmacological Potential of Cyanobacteria, Academic Press.
- (114). 10.1002/anie.200390115
- (115). 10.1200/EDBK_349783
- (116). Robles-Bañuelos, B., Durán-Riveroll, L.M., Rangel-López, E., Pérez-López, H.I., and González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27.
- (117). Wang, E., Sorolla, M.A., Krishnan, P.D.G., and Sorolla, A. (2020). From Seabed to Bedside: A Review on Promising Marine Anticancer Compounds. Biomolecules, 10.
- (118). 10.3389/fmars.2021.629629
- (119). Lath, A., Santal, A.R., Kaur, N., Kumari, P., and Singh, N.P. (2022). Anti-cancer peptides: Their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol. Genet. Eng. Rev., 1–40.
- (120). 10.4155/fdd-2022-0005
- (121). 10.1039/D0NP00019A
- (122). 10.1016/j.coph.2019.01.008
- (123). 10.3762/bjnano.11.72
- (124). 10.1007/s40263-020-00766-w
- (125). 10.1088/2632-959X/ab9008